Survey on the geometric Bogomolov conjecture
Publications Mathématiques de Besançon (2017), pp. 137-193.

Ce texte est un article de synthèse portant sur la conjecture de Bogomolov géométrique. Nous y expliquons nos résultats récents ainsi que les travaux qui les ont précédés. Cet article contient également une introduction à la théorie des hauteurs sur les corps de fonctions et un exposé rapide des notions de base de géométrique analytique non-archimédienne.

This is a survey paper of the developments on the geometric Bogomolov conjecture. We explain the recent results by the author as well as previous works concerning the conjecture. This paper also includes an introduction to the height theory over function fields and a quick review on basic notions on nonarchimedean analytic geometry.

Publié le : 2017-11-30
DOI : https://doi.org/10.5802/pmb.19
Classification : 14G40,  11G50
Mots clés: Geometric Bogomolov conjecture, Bogomolov conjecture, canonical heights, canonical measures, small points
@article{PMB_2017____137_0,
     author = {Kazuhiko Yamaki},
     title = {Survey on the geometric Bogomolov conjecture},
     journal = {Publications Math\'ematiques de Besan\c con},
     publisher = {Presses universitaires de Franche-Comt\'e},
     year = {2017},
     pages = {137-193},
     doi = {10.5802/pmb.19},
     zbl = {1404.14028},
     mrnumber = {3752491},
     language = {en},
     url = {pmb.centre-mersenne.org/item/PMB_2017____137_0/}
}
Kazuhiko Yamaki. Survey on the geometric Bogomolov conjecture. Publications Mathématiques de Besançon (2017), pp. 137-193. doi : 10.5802/pmb.19. https://pmb.centre-mersenne.org/item/PMB_2017____137_0/

[1] Ahmed Abbes Hauteurs et discrétude (d’après Szpiro, L., Ullmo, E., Zhang, S.), Séminaire Bourbaki 1996/97 (Astérisque) Volume 245, Société Mathématique de France, 1997, pp. 141-166 | Numdam | MR 1627110 | Zbl 1014.11042

[2] Vladimir G. Berkovich Spectral theory and analytic geometry over non-archimedean fields, Mathematical Surveys and Monographs, Volume 33, American Mathematical Society, 1990, ix+169 pages | MR 1070709 | Zbl 0715.14013

[3] Vladimir G. Berkovich Etale cohomology for non-archimedean analytic spaces, Publ. Math., Inst. Hautes Étud. Sci., Volume 78 (1993), pp. 5-161 | Article | Numdam | Zbl 0804.32019

[4] Vladimir G. Berkovich Vanishing cycles for formal schemes, Invent. Math., Volume 115 (1994) no. 3, pp. 539-571 | Article | MR 1262943 | Zbl 0791.14008

[5] Vladimir G. Berkovich Smooth p-adic analytic spaces are locally contractible, Invent. Math., Volume 137 (1999) no. 1, pp. 1-84 | Article | MR 1702143 | Zbl 0930.32016

[6] Fedor Alekseivich Bogomolov Points of finite order on Abelian Variety, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 44 (1980) no. 4, pp. 782-804 | MR 587337 | Zbl 0453.14018

[7] Enrico Bombieri; Walter Gubler Heights in Diophantine geometry, New Mathematical Monographs, Volume 4, Cambridge University Press, 2006, xvi+652 pages | MR 2216774 | Zbl 1115.11034

[8] Antoine Chambert-Loir Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math., Volume 595 (2006), pp. 215-235 | Zbl 1112.14022

[9] Zubeyir Cinkir Zhang’s conjecture and the effective Bogomolov conjecture over function fields, Invent. Math., Volume 183 (2011) no. 3, pp. 517-562 | Article | MR 2772087 | Zbl 1285.14029

[10] X. W. C. Faber The geometric Bogomolov conjecture for curves of small genus, Exp. Math., Volume 18 (2009) no. 3, pp. 347-367 | Article | MR 2555704 | Zbl 1186.11035

[11] Walter Gubler Local heights of subvarieties over non-archimedean fields, J. Reine Angew. Math., Volume 498 (1998), pp. 61-113 | Article | MR 1629925 | Zbl 0906.14013

[12] Walter Gubler Local and canonical heights of subvarieties, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 2 (2003) no. 4, pp. 711-760 | Numdam | MR 2040641 | Zbl 1170.14303

[13] Walter Gubler The Bogomolov conjecture for totally degenerate abelian varieties, Invent. Math., Volume 169 (2007) no. 2, pp. 377-400 | Article | MR 2318560 | Zbl 1153.14029

[14] Walter Gubler Tropical varieties for non-archimedean analytic spaces, Invent. Math., Volume 169 (2007) no. 2, pp. 321-376 | Article | MR 2318559 | Zbl 1153.14036

[15] Walter Gubler Equidistribution over function fields, Manuscr. Math., Volume 127 (2008) no. 4, pp. 485-510 | Article | MR 2457191 | Zbl 1189.14030

[16] Walter Gubler Non-archimedean canonical measures on abelian varieties, Compos. Math., Volume 146 (2010) no. 3, pp. 683-730 | Article | MR 2644932 | Zbl 1192.14021

[17] A.J. de Jong Smoothness, semi-stability and alterations, Publ. Math., Inst. Hautes Étud. Sci., Volume 83 (1996), pp. 51-93 | Article | Numdam | Zbl 0916.14005

[18] Shu Kawaguchi; Atsushi Moriwaki; Kazuhiko Yamaki Introduction to Arakelov geometry, Algebraic geometry in East Asia (Kyoto, 2001) (2002), pp. 1-74 | Zbl 1051.14028

[19] Serge Lang Division points on curves, Ann. Mat. Pura Appl., Volume 70 (1965), pp. 229-234 | Article | MR 190146 | Zbl 0151.27401

[20] Serge Lang Abelian varieties, Springer, 1983, xii+256 pages | Zbl 0516.14031

[21] Serge Lang Fundamentals of Diophantine Geometry, Springer, 1983, xviii+370 pages | Zbl 0528.14013

[22] Laurent Moret-Bailly Métriques permises, Séminaire sur les pinceaux arithmétiques: La Conjecture de Mordell (Astérisque) Volume 127, Société Mathématique de France, 1985, pp. 29-87 | Numdam | Zbl 1182.11028

[23] Atsushi Moriwaki Bogomolov conjecture for curves of genus 2 over function fields, J. Math. Kyoto Univ., Volume 36 (1996) no. 4, pp. 687-695 | Article | MR 1443744 | Zbl 0901.14014

[24] Atsushi Moriwaki A sharp slope inequality for general stable fibrations of curves, J. Reine Angew. Math., Volume 480 (1996), pp. 177-195 | MR 1420563 | Zbl 0861.14027

[25] Atsushi Moriwaki Bogomolov conjecture over function fields for stable curves with only irreducible fibers, Compos. Math., Volume 105 (1997) no. 2, pp. 125-140 | Article | MR 1440719 | Zbl 0917.14012

[26] Atsushi Moriwaki Relative Bogomolov’s inequality and the cone of positive divisors on the moduli space of stable curves, J. Am. Math. Soc., Volume 11 (1998) no. 3, pp. 569-600 | Article | MR 1488349 | Zbl 0893.14004

[27] Atsushi Moriwaki Arithmetic height functions over finitely generated fields, Invent. Math., Volume 140 (2000) no. 1, pp. 101-142 | Article | MR 1779799 | Zbl 1007.11042

[28] David Mumford Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, Volume 5, Oxford University Press, 1970, viii+242 pages | MR 282985 | Zbl 0223.14022

[29] Johannes Nicaise Berkovich skeleta and birational geometry (2014) (https://arxiv.org/abs/1409.5229) | Zbl 1349.14102

[30] Richard Pink; Damian Roessler On ψ-invariant subvarieties of semiabelian varieties and the Manin–Mumford conjecture, J. Algebr. Geom., Volume 13 (2004) no. 4, pp. 771-798 | Article | MR 2073195 | Zbl 1072.14054

[31] Michel Raynaud Courbes sur une variété abélienne et points de torsion, Invent. Math., Volume 71 (1983), pp. 207-233 | Article | Zbl 0564.14020

[32] Michel Raynaud Sous-variétés dúne variété abélienne et points de torsion, Arithmetic and geometry, vol. I: Arithmetic (Progress in Mathematics) Volume 35, Birkhäuser, 1983, pp. 327-352 | Article | Zbl 0581.14031

[33] Thomas Scanlon Diophantine geometry from model theory, Bull. Symb. Log., Volume 7 (2001) no. 1, pp. 37-57 | Article | MR 1836475 | Zbl 0984.03035

[34] Thomas Scanlon A positive characteristic Manin–Mumford theorem, Compos. Math., Volume 141 (2005) no. 6, pp. 1351-1364 | Article | MR 2185637 | Zbl 1089.03030

[35] Lucien Szpiro; Emmanuel Ullmo; Shou-Wu Zhang Équirépartition des petits points, Invent. Math., Volume 127 (1997) no. 2, pp. 337-347 | Article | Zbl 0991.11035

[36] Emmanuel Ullmo Positivité et discrétion des points algébriques des courbes, Ann. Math., Volume 147 (1998) no. 1, pp. 167-179 | Article | Zbl 0934.14013

[37] Kazuhiko Yamaki Geometric Bogomolov conjecture for nowhere degenerate abelian varieties of dimension 5 with trivial trace (to appear in Math. Res. Lett.) | MR 3747175 | Zbl 1401.14137

[38] Kazuhiko Yamaki Geometric Bogomolov’s conjecture for curves of genus 3 over function fields, J. Math. Kyoto Univ., Volume 42 (2002) no. 1, pp. 57-81 | Article | MR 1932737 | Zbl 1045.11047

[39] Kazuhiko Yamaki Effective calculation of the geometric height and the Bogomolov conjecture for hyperelliptic curves over function fields, J. Math. Kyoto Univ., Volume 48 (2008) no. 2, pp. 401-443 | Article | MR 2436745 | Zbl 1248.11046

[40] Kazuhiko Yamaki Geometric Bogomolov conjecture for abelian varieties and some results for those with some degeneration (with an appendix by Walter Gubler: The minimal dimension of a canonical measure), Manuscr. Math., Volume 142 (2013) no. 3-4, pp. 273-306 | Article | MR 3117164 | Zbl 1281.14018

[41] Kazuhiko Yamaki Strict supports of canonical measures and applications to the geometric Bogomolov conjecture, Compos. Math., Volume 152 (2016) no. 5, pp. 997-1040 | Article | MR 3505646 | Zbl 1383.14008

[42] Kazuhiko Yamaki Trace of abelian varieties over function fields and the geometric Bogomolov conjecture, J. Reine Angew. Math. (2016) (https://doi.org/10.1515/crelle-2015-0086) | Article | MR 3836145 | Zbl 06916484

[43] Kazuhiko Yamaki Non-density of small points on divisors on abelian varieties and the Bogomolov conjecture, J. Am. Math. Soc., Volume 30 (2017) no. 4, pp. 1133-1163 | Article | MR 3671938 | Zbl 06750376

[44] Xinyi Yuan Big line bundles over arithmetic varieties, Invent. Math., Volume 173 (2008) no. 3, pp. 603-649 | Article | MR 2425137 | Zbl 1146.14016

[45] Shou-Wu Zhang Admissible pairing on a curve, Invent. Math., Volume 112 (1993) no. 1, pp. 171-193 | Article | MR 1207481 | Zbl 0795.14015

[46] Shou-Wu Zhang Small points and adelic metrics, J. Algebr. Geom., Volume 4 (1995) no. 2, pp. 281-300 | MR 1311351 | Zbl 0861.14019

[47] Shou-Wu Zhang Equidistribution of small points on abelian varieties, Ann. Math., Volume 147 (1998) no. 1, pp. 159-165 | Article | MR 1609518 | Zbl 0991.11034

[48] Shou-Wu Zhang Gross-Schoen cycles and dualising sheaves, Invent. Math., Volume 179 (2010) no. 1, pp. 1-73 | Article | MR 2563759 | Zbl 1193.14031