Hurwitz–Belyi maps
[Applications d’Hurwitz–Belyi]
Publications Mathématiques de Besançon - Algèbre et Théorie des Nombres (2018), pp. 25-67.

L’étude des modules de revêtements de la droite projective conduit à la théorie des variétés de Hurwitz comme revêtements des variétés de configurations. Certaines sections de dimension un des ces revêtements sont des applications de Belyi particulièrement intéressantes. Nous présentons des exemples de telles applications « d’Hurwitz–Belyi » qui illustrent une large variété de phénomènes théoriques et techniques de calculs.

The study of the moduli of covers of the projective line leads to the theory of Hurwitz varieties covering configuration varieties. Certain one-dimensional slices of these coverings are particularly interesting Belyi maps. We present systematic examples of such “Hurwitz–Belyi maps”. Our examples illustrate a wide variety of theoretical phenomena and computational techniques.

Publié le :
DOI : https://doi.org/10.5802/pmb.21
Classification : 11G32,  14H57
Mots clés : Hurwitz variety, Belyi map, ramification
@article{PMB_2018____25_0,
     author = {David P. Roberts},
     title = {Hurwitz--Belyi maps},
     journal = {Publications Math\'ematiques de Besan\c con - Alg\`ebre et Th\'eorie des Nombres},
     pages = {25--67},
     publisher = {Presses universitaires de Franche-Comt\'e},
     year = {2018},
     doi = {10.5802/pmb.21},
     language = {en},
     url = {https://pmb.centre-mersenne.org/item/PMB_2018____25_0/}
}
Roberts, David P. Hurwitz–Belyi maps. Publications Mathématiques de Besançon - Algèbre et Théorie des Nombres (2018), pp. 25-67. doi : 10.5802/pmb.21. https://pmb.centre-mersenne.org/item/PMB_2018____25_0/

[1] Frits Beukers; Hans Montanus Explicit calculation of elliptic fibrations of K3-surfaces and their Belyi-maps, Number theory and polynomials, Cambridge University Press (London Mathematical Society Lecture Note Series) Tome 352 (2008), pp. 33-51 | Article | MR 2428514 | Zbl 1266.11078

[2] Alexandre Grothendieck Esquisse d’un programme, Geometric Galois actions, 1, Cambridge University Press (London Mathematical Society Lecture Note Series) Tome 242 (1997), pp. 5-48 (With an English translation on pp. 243–283) | MR 1483107 | Zbl 0901.14001

[3] Emmanuel Hallouin Study and computation of a Hurwitz space and totally real PSL 2 (𝔽 8 )-extensions of , J. Algebra, Tome 292 (2005) no. 1, pp. 259-281 | Article | MR 2166804 | Zbl 1096.12003

[4] Adam James; Kay Magaard; Sergey Shpectorov The lift invariant distinguishes components of Hurwitz spaces for A 5 , Proc. Am. Math. Soc., Tome 143 (2015) no. 4, pp. 1377-1390 | Article | MR 3314053 | Zbl 1373.14028

[5] Gareth A. Jones; Alexander K. Zvonkin Orbits of braid groups on cacti, Mosc. Math. J., Tome 2 (2002) no. 1, pp. 127-160 | MR 1900588 | Zbl 1008.20030

[6] Michael Klug; Michael Musty; Sam Schiavone; John Voight Numerical calculation of three-point branched covers of the projective line, LMS J. Comput. Math., Tome 17 (2014) no. 1, pp. 379-430 | Article | MR 3356040 | Zbl 1351.30027

[7] Stefan Krämer Numerical calculation of automorphic functions for finite index subgroups of triangle groups, Universität Bonn (Germany) (2015) (Ph. D. Thesis)

[8] Sergei K. Lando; Alexander K. Zvonkin Graphs on surfaces and their applications, Springer, Encyclopaedia of Mathematical Sciences, Tome 141 (2004), xvi+455 pages (With an appendix by Don B. Zagier, Low-Dimensional Topology, II) | Article | MR 2036721 | Zbl 1040.05001

[9] Kay Magaard; Sergey Shpectorov; Helmut Völklein A GAP package for braid orbit computation and applications, Exp. Math., Tome 12 (2003) no. 4, pp. 385-393 http://projecteuclid.org/euclid.em/1087568015 | MR 2043989 | Zbl 1068.12002

[10] Gunter Malle Polynomials with Galois groups Aut (M 22 ),M 22 , and PSL 3 (F 4 )·2 2 over Q, Math. Comp., Tome 51 (1988) no. 184, pp. 761-768 | Article | MR 958642 | Zbl 0699.12036

[11] Gunter Malle Fields of definition of some three point ramified field extensions, The Grothendieck theory of dessins d’enfants (Luminy, 1993), Cambridge University Press (London Mathematical Society Lecture Note Series) Tome 200 (1994), pp. 147-168 | MR 1305396 | Zbl 0871.14021

[12] Gunter Malle Multi-parameter polynomials with given Galois group, J. Symb. Comput., Tome 30 (2000) no. 6, pp. 717-731 | Article | MR 1800034 | Zbl 0967.12005

[13] Gunter Malle; B. Heinrich Matzat Inverse Galois theory, Springer, Springer Monographs in Mathematics (1999), xvi+436 pages | Article | MR 1711577 | Zbl 0940.12001

[14] Gunter Malle; David P. Roberts Number fields with discriminant ±2 a 3 b and Galois group A n or S n , LMS J. Comput. Math., Tome 8 (2005), pp. 80-101 | Article | MR 2135031 | Zbl 1119.11064

[15] David P. Roberts Chebyshev covers and exceptional number fields (in preparation)

[16] David P. Roberts Fractalized cyclotomic polynomials, Proc. Am. Math. Soc., Tome 135 (2007) no. 7, pp. 1959-1967 | Article | MR 2299467 | Zbl 1185.11064

[17] David P. Roberts Division polynomials with Galois group SU 3 (3).2G 2 (2), Advances in the theory of numbers, Fields Inst. Res. Math. Sci., Toronto, ON (Fields Inst. Commun.) Tome 77 (2015), pp. 169-206 | Article | MR 3409329 | Zbl 06583557

[18] David P. Roberts Polynomials with prescribed bad primes, Int. J. Number Theory, Tome 11 (2015) no. 4, pp. 1115-1148 | Article | MR 3340686 | Zbl 1344.11074

[19] David P. Roberts Lightly ramified number fields with Galois group S.M 12 .A, J. Théor. Nombres Bordx, Tome 28 (2016) no. 2, pp. 435-460 http://jtnb.cedram.org/item?id=jtnb_2016__28_2_435_0 | Zbl 06606981

[20] David P. Roberts Hurwitz number fields, New York J. Math., Tome 23 (2017), pp. 227-272 | Zbl 06694416

[21] David P. Roberts A three-parameter clan of Hurwitz–Belyi maps, Publ. Math. Besançon, Algèbre Théorie Nombres, Tome 6 (2018), pp. 69-83

[22] David P. Roberts; Akshay Venkatesh Hurwitz monodromy and full number fields, Algebra Number Theory, Tome 9 (2015) no. 3, pp. 511-545 | Article | MR 3340543 | Zbl 1349.14037

[23] Jean-Pierre Serre Relèvements dans A ˜ n , C. R. Math. Acad. Sci. Paris, Tome 311 (1990) no. 8, pp. 477-482 | MR 1076476 | Zbl 0714.20003

[24] Jeroen Sijsling; John Voight On computing Belyi maps, Publ. Math. Besançon, Algèbre Théorie Nombres, Tome 1 (2014) no. 1, pp. 73-131 | MR 3362631 | Zbl 1364.11127

[25] Liangcai Zhang; Guiyun Chen; Shunmin Chen; Xuefeng Liu Notes on finite simple groups whose orders have three or four prime divisors, J. Algebra Appl., Tome 8 (2009) no. 3, pp. 389-399 | Article | MR 2535997 | Zbl 1208.20013