We explain how to obtain from Kneser–Nishiyama’s method all the elliptic fibrations of the singular (i.e. of Picard number ) surface of discriminant and belonging to the Apéry–Fermi pencil (). The case of its extremal elliptic fibrations is developped together with Weierstrass equations, noticing that two of them are obtained by -isogeny from extremal fibrations of the surface of discriminant .
On montre comment la méthode de Kneser–Nishiyama permet d’obtenir toutes les fibrations elliptiques de la surface singulière (i.e. de nombre de Picard ) de discriminant , notée , appartenant au pinceau () de surfaces d’Apéry–Fermi. Les fibrations elliptiques extrémales sont en outre données avec des équations de Weierstrass. On remarque que deux d’entre elles sont obtenues par -isogénie à partir de fibrations extrémales de la surface de discriminant .
@article{PMB_2022____5_0, author = {Marie Jos\'e Bertin and Odile Lecacheux}, title = {Elliptic {Fibrations} of a certain $K3$ surface of the {Ap\'ery{\textendash}Fermi} pencil}, journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres}, pages = {5--36}, publisher = {Presses universitaires de Franche-Comt\'e}, year = {2022}, doi = {10.5802/pmb.44}, language = {en}, url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.44/} }
TY - JOUR AU - Marie José Bertin AU - Odile Lecacheux TI - Elliptic Fibrations of a certain $K3$ surface of the Apéry–Fermi pencil JO - Publications mathématiques de Besançon. Algèbre et théorie des nombres PY - 2022 SP - 5 EP - 36 PB - Presses universitaires de Franche-Comté UR - https://pmb.centre-mersenne.org/articles/10.5802/pmb.44/ UR - https://doi.org/10.5802/pmb.44 DO - 10.5802/pmb.44 LA - en ID - PMB_2022____5_0 ER -
%0 Journal Article %A Marie José Bertin %A Odile Lecacheux %T Elliptic Fibrations of a certain $K3$ surface of the Apéry–Fermi pencil %J Publications mathématiques de Besançon. Algèbre et théorie des nombres %D 2022 %P 5-36 %I Presses universitaires de Franche-Comté %U https://doi.org/10.5802/pmb.44 %R 10.5802/pmb.44 %G en %F PMB_2022____5_0
Marie José Bertin; Odile Lecacheux. Elliptic Fibrations of a certain $K3$ surface of the Apéry–Fermi pencil. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2022), pp. 5-36. doi : 10.5802/pmb.44. https://pmb.centre-mersenne.org/articles/10.5802/pmb.44/
[1] Mahler’s measure and -series of hypersurfaces, Mirror Symmetry V, Proceedings of the BIRS Workshop on Calabi–Yau Varieties and Mirror Symmetry (AMS/IP Studies in Advanced Mathematics), Volume 38, American Mathematical Society, 2006, pp. 3-18 | MR | Zbl
[2] The Mahler measure and -series of a singular surface (2008) (https://arxiv.org/abs/0803.0413)
[3] Measure de Mahler et série d’une surface singulière, Actes de la Conférence “Fonctions et Arithmétique” (Publications Mathématiques de Besançon. Algèbre et Théorie des Nombres), Volume 2010, Laboratoire de Mathématique de Besançon, 2010, pp. 5-28 | MR | Zbl
[4] Classifications of seliptic fibrations of a singular surface, Women in numbers Europe, Research directions in number theory (Association for Women in Mathematics Series), Volume 2, Springer, 2015, pp. 17-49 | DOI | Zbl
[5] Elliptic fibrations on the modular surface associated to , Arithmetic and geometry of surfaces and Calabi–Yau threefolds (Fields Institute Communications), Volume 67, Springer, 2013, pp. 153-199 | DOI | MR
[6] Apéry–Fermi pencil of Surfaces and -isogenies, J. Math. Soc. Japan, Volume 72 (2020) no. 2, pp. 599-637 | Zbl
[7] Groupes et algèbres de Lie, Chap. 4, 5, 6, Masson, 1981
[8] Personal communication
[9] On the Classification of Elliptic Fibrations modulo Isomorphism on Surfaces with large Picard Number (2013) (https://arxiv.org/abs/1312.4421)
[10] A course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, 138, Springer, 2000
[11] Certain Important Lattices and Their Properties and Enumeration of Unimodular Lattices, Sphere Packings, Lattices and Groups (Grundlehren der Mathematischen Wissenschaften), Volume 1993, Springer, 1993, p. 94-131 and 406-413 | DOI
[12] Surfaces and Equations for Hilbert Modular Surfaces, Algebra Number Theory, Volume 8 (2014) no. 10, pp. 2297-2411 | DOI | MR | Zbl
[13] Bhabha scattering and a special pencil of surfaces, Commun. Number Theory Phys., Volume 13 (2019) no. 2, pp. 463-485 | DOI | MR | Zbl
[14] On Compact Analytic Surfaces I-III, Ann. Math., Volume 71, 77, 78 (1960, 1963, 1963), p. 111-152, 563-626, 1-40 | DOI | Zbl
[15] Elliptic fibrations on a generic Jacobian Kummer Surface, J. Algebr. Geom., Volume 23 (2014) no. 4, pp. 599-667 | DOI | MR | Zbl
[16] Maple Library Elliptic Surface Calculator (http://c-faculty.chuo-u.ac.jp/~kuwata/2012-13/Maple_resources/ESC.mpl)
[17] Perfect lattices in Euclidean Spaces, Grundlehren der Mathematischen Wissenschaften, 327, Springer, 2003 | DOI
[18] Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Publ. Math., Inst. Hautes Étud. Sci., Volume 21 (1964), pp. 361-484 | Numdam | Zbl
[19] Definite quadratische Formen der Dimension und Diskriminante , J. Number Theory, Volume 5 (1973), pp. 142-178 | DOI | MR | Zbl
[20] Integral Symmetric bilinear Forms and some of their Applications, Izv. Math., Volume 14 (1980), pp. 103-167 | DOI | Zbl
[21] The Jacobian fibrations on some surfaces and their Mordell–Weil groups, Jap. J. Math., Volume 22 (1996) no. 2, pp. 293-347 | DOI | MR | Zbl
[22] Torelli’s theorem for algebraic surfaces of type , Izv. Akad. Nauk SSSR, Ser. Mat., Volume 35 (1971), pp. 530-572
[23] Personal communication
[24] Elliptic surfaces, Algebraic geometry in East Asia – Seoul 2008 (Advanced Studies in Pure Mathematics), Volume 60, Mathematical Society of Japan, 2010, pp. 51-160 | DOI | MR | Zbl
[25] Classification of extremal elliptic surfaces and fundamental groups of open surfaces, Nagoya Math. J., Volume 161 (2001), pp. 23-54 | DOI | MR | Zbl
[26] Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 151, Springer, 1994 | DOI
[27] Rational points on elliptic curves, Undergraduate Texts in Mathematics, Springer, 1992 | DOI
[28] Finiteness Results for Algebraic Surfaces, Math. Z., Volume 180 (1985), pp. 507-513 | DOI | MR | Zbl
[29] Weierstrass Equations for Jacobian Fibrations on a certain Surface, Hiroshima Math. J., Volume 42 (2012) no. 3, pp. 355-383 | MR | Zbl
Cited by Sources: