It is proved that $c=689\,347=31\cdot 37\cdot 601$ is the smallest conductor of a cyclic cubic number field $K$ whose maximal unramified pro-$3$-extension $E=\mathrm{F}_3^\infty (K)$ possesses an automorphism group $G=\mathrm{Gal}(E/K)$ of order $6561$ with coinciding relation and generator rank $d_2(G)=d_1(G)=3$ and harmonically balanced transfer kernels $\varkappa (G)\in S_{13}$. The result depends on computations done under the assumption of the GRH.
Nous établissons que $c=689\,347=31\cdot 37\cdot 601$ est le plus petit conducteur d’un corps cubique cyclique $K$ dont la pro-$3$-extension maximale non-ramifiée $E=\mathrm{F}_3^\infty (K)$ admet un groupe d’automorphismes $G=\mathrm{Gal}(E/K)$ d’ordre $6561$, avec égalité du rang des relations et des générateurs $d_2(G)=d_1(G)=3$, et des noyaux de transfert harmonieusement équilibrés $\varkappa (G)\in S_{13}$. Le résultat dépend de calculs fait sous l’hypothèse de Riemann généralisée.
Keywords: Finite $3$-groups, elementary tricyclic commutator quotient, relation rank, closed groups, Schur groups, Andozhskii–Tsvetkov groups, maximal and second maximal subgroups, kernels of Artin transfers, abelian quotient invariants, rank distribution, $p$-group generation algorithm, descendant tree, cyclic cubic number fields, harmonically balanced capitulation, Galois groups, $3$-class field tower
Bill Allombert 1 ; Daniel C. Mayer 2

@article{PMB_2025____21_0, author = {Bill Allombert and Daniel C. Mayer}, title = {Corps de nombres cubiques cycliques ayant une capitulation harmonieusement \'equilibr\'ee}, journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres}, pages = {21--46}, publisher = {Presses universitaires de Franche-Comt\'e}, year = {2025}, doi = {10.5802/pmb.60}, language = {en}, url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.60/} }
TY - JOUR AU - Bill Allombert AU - Daniel C. Mayer TI - Corps de nombres cubiques cycliques ayant une capitulation harmonieusement équilibrée JO - Publications mathématiques de Besançon. Algèbre et théorie des nombres PY - 2025 SP - 21 EP - 46 PB - Presses universitaires de Franche-Comté UR - https://pmb.centre-mersenne.org/articles/10.5802/pmb.60/ DO - 10.5802/pmb.60 LA - en ID - PMB_2025____21_0 ER -
%0 Journal Article %A Bill Allombert %A Daniel C. Mayer %T Corps de nombres cubiques cycliques ayant une capitulation harmonieusement équilibrée %J Publications mathématiques de Besançon. Algèbre et théorie des nombres %D 2025 %P 21-46 %I Presses universitaires de Franche-Comté %U https://pmb.centre-mersenne.org/articles/10.5802/pmb.60/ %R 10.5802/pmb.60 %G en %F PMB_2025____21_0
Bill Allombert; Daniel C. Mayer. Corps de nombres cubiques cycliques ayant une capitulation harmonieusement équilibrée. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2025), pp. 21-46. doi : 10.5802/pmb.60. https://pmb.centre-mersenne.org/articles/10.5802/pmb.60/
[1] On some classes of closed pro-p-groups, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 39 (1975) no. 4, pp. 707-738 | MR
[2] On a series of finite closed p-groups, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 38 (1974) no. 2, pp. 278-290 | MR | Zbl
[3] A group theoretic approach to cyclic cubic fields, Mathematics, Volume 12 (2024) no. 1, p. 126 | DOI
[4] On Schur -groups, Math. Nachr., Volume 192 (1998), pp. 71-89 | DOI | MR | Zbl
[5] Beweis des allgemeinen Reziprozitätsgesetzes, Abh. Hamb., Volume 5 (1927), pp. 353-363 | DOI | Zbl
[6] Idealklassen in Oberkörpern und allgemeines Reziprozitätsgesetz, Abh. Hamb., Volume 7 (1929), pp. 46-51 | DOI | Zbl
[7] Sur la capitulation des -classes d’idéaux d’un corps cubique cyclique, Ph. D. Thesis, Université Laval, Québec (1995)
[8] The capitulation problem for certain number fields, Class field theory – its centenary and prospect (Advanced Studies in Pure Mathematics), Volume 30, Mathematical Society of Japan, 2001, pp. 467-482 | DOI | Zbl
[9] Small generators of the ideal class group, Math. Comput., Volume 77 (2008) no. 262, pp. 1185-1197 | DOI | MR | Zbl
[10] Computing the residue of the Dedekind zeta function, Math. Comput., Volume 84 (2015) no. 291, pp. 357-369 | DOI | MR | Zbl
[11] A millennium project: constructing small groups, Int. J. Algebra Comput., Volume 12 (2002) no. 5, pp. 623-644 | DOI | MR | Zbl
[12] The SmallGroups Library — a Library of Groups of Small Order, 2005 (an accepted and refereed GAP package, available also in Magma)
[13] A subexponential algorithm for the determination of class groups and regulators of algebraic number fields, Séminaire de théorie des nombres, Paris, France 1988-1989 (Progress in Mathematics), Volume 91, Birkhäuser, 1990, pp. 27-41 | MR | Zbl
[14] A course in computational algebraic number theory, Graduate Texts in Mathematics, 138, Springer, 2000 | Numdam | MR | Zbl
[15] Subexponential algorithms for class group and unit computations, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 433-441 | DOI | MR | Zbl
[16] Computing class fields via the Artin map, Math. Comput., Volume 70 (2001) no. 235, pp. 1293-1303 | DOI | MR | Zbl
[17] ANU p-Quotient — p-Quotient and p-Group Generation Algorithms, 2006 (an accepted GAP package, available also in Magma)
[18] Sur les -classes d’idéaux dans les extensions cycliques relatives de degré premier , Ann. Inst. Fourier, Volume 23 (1973) no. 4, pp. 1-44 | DOI | MR | Zbl
[19] An improvement to an algorithm of Belabas, Diaz y Diaz and Friedman (2016) | arXiv
[20] Handbook of computational group theory, Discrete Mathematics and its Applications, Chapman & Hall/CRC, 2005 | DOI | MR | Zbl
[21] Über den -Klassenkörperturm eines imaginär-quadratischen Zahlkörpers, Journées arithmétiques de Bordeaux, 27 mai - 1er juin 1974 (Astérisque), Volume 24-25, Société Mathématique de France, 1975, pp. 57-67 | Numdam | MR | Zbl
[22] Magma, Data for groups of order , data3to8.tar.gz (available from http://magma.maths.usyd.edu.au)
[23] Magma Computational Algebra System, Version 2.28-6, 2024 (available from http://magma.maths.usyd.edu.au)
[24] The second -class group of a number field, Int. J. Number Theory, Volume 8 (2012) no. 2, pp. 471-505 | DOI | MR | Zbl
[25] Transfers of metabelian -groups, Monatsh. Math., Volume 166 (2012) no. 3-4, pp. 467-495 | DOI | MR | Zbl
[26] Index- abelianization data of -class tower groups, Adv. Pure Math., Volume 5 (2015) no. 5, pp. 286-313 (Special Issue on Number Theory and Cryptography) | DOI
[27] New number fields with known -class tower, Tatra Mt. Math. Publ., Volume 64 (2015), pp. 21-57 (Special Issue on Number Theory and Cryptology ’15) | DOI | MR | Zbl
[28] Artin transfer patterns on descendant trees of finite -groups, Adv. Pure Math., Volume 6 (2016) no. 2, pp. 66-104 (Special Issue on Number Theory) | DOI
[29] Recent progress in determining -class field towers, Gulf J. Math., Volume 4 (2016) no. 4, pp. 74-102 | MR | Zbl
[30] Recent progress in determining -class field towers, 1st International Colloquium of Algebra, Number Theory, Cryptography and Information Security (ANCI) 2016, Faculté Polydisciplinaire de Taza, Université Sidi Mohamed Ben Abdellah, Fès, Morocco (2016) (invited keynote 12 November 2016, available from http://www.algebra.at/ANCI2016DCM.pdf)
[31] Criteria for three-stage towers of -class fields, Adv. Pure Math., Volume 7 (2017) no. 2, pp. 135-179 (Special Issue on Number Theory, February 2017) | DOI
[32] Successive approximation of -class towers, Adv. Pure Math., Volume 7 (2017) no. 12, pp. 660-685 (Special Issue on Abstract Algebra) | DOI
[33] Pattern recognition via Artin transfers applied to class field towers, 3rd International Conference on Mathematics and its Applications (ICMA) 2020, Faculté des Sciences d’ Ain Chock Casablanca (FSAC), Université Hassan II, Casablanca, Morocco (2020) (invited keynote 28 February 2020, available from http://www.algebra.at/DCM@ICMA2020Casablanca.pdf)
[34] Theoretical and experimental approach to -class field towers of cyclic cubic number fields, Sixièmes Journées d’Algèbre, Théorie des Nombres et leurs Applications (JATNA) 2022, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco (2022) (four invited keynotes 25–26 November 2022, available from http://www.algebra.at/CyclicCubicTheoryAndExperiment.pdf)
[35] Algebraic investigations of Hilbert’s Theorem 94, the principal ideal theorem and the capitulation problem, Expo. Math., Volume 7 (1989) no. 4, pp. 289-346 | MR | Zbl
[36] Determination of groups of prime-power order, Group Theory, Canberra, 1975 (Lecture Notes in Mathematics), Volume 573, Springer, 1977, pp. 73-84 | MR | Zbl
[37] The -group generation algorithm, J. Symb. Comput., Volume 9 (1990) no. 5-6, pp. 677-698 | DOI | MR | Zbl
[38] PARI/GP version 2.16.1, 2024 (available from http://pari.math.u-bordeaux.fr/)
[39] Bicyclic Bicubic Fields, Can. J. Math., Volume 42 (1990) no. 3, pp. 491-507 | DOI | MR | Zbl
[40] Die Hauptideale der kubischen Klassenkörper imaginär quadratischer Zahlkörper: ihre rechnerische Bestimmung und ihr Einfluß auf den Klassenkörperturm, J. Reine Angew. Math., Volume 171 (1934), pp. 19-41 | MR | Zbl
[41] Infinite class field towers of quadratic fields, J. Reine Angew. Math., Volume 372 (1986), pp. 209-220 | MR | Zbl
[42] Extensions with given points of ramification, Publ. Math., Inst. Hautes Étud. Sci., Volume 18 (1963), pp. 71-92 English transl. by J. W. S. Cassels in Amer. Math. Soc. Transl., II. Ser.,59 (1966), p. 128–149
[43] The On-Line Encyclopedia of Integer Sequences, 2023 (http://oeis.org)
[44] A remark concerning Hilbert’s Theorem 94, J. Reine Angew. Math., Volume 239-240 (1970), pp. 435-438 | MR | Zbl
[45] Ob odnom obobshchenii algorifma nepreryvnykh drobeĭ (On a generalization of the algorithm of continued fractions), Ph. D. Thesis, Warsaw (1896) (Russian)
Cité par Sources :