Corps de nombres cubiques cycliques ayant une capitulation harmonieusement équilibrée
Publications mathématiques de Besançon. Algèbre et théorie des nombres (2025), pp. 21-46.

It is proved that $c=689\,347=31\cdot 37\cdot 601$ is the smallest conductor of a cyclic cubic number field $K$ whose maximal unramified pro-$3$-extension $E=\mathrm{F}_3^\infty (K)$ possesses an automorphism group $G=\mathrm{Gal}(E/K)$ of order $6561$ with coinciding relation and generator rank $d_2(G)=d_1(G)=3$ and harmonically balanced transfer kernels $\varkappa (G)\in S_{13}$. The result depends on computations done under the assumption of the GRH.

Nous établissons que $c=689\,347=31\cdot 37\cdot 601$ est le plus petit conducteur d’un corps cubique cyclique $K$ dont la pro-$3$-extension maximale non-ramifiée $E=\mathrm{F}_3^\infty (K)$ admet un groupe d’automorphismes $G=\mathrm{Gal}(E/K)$ d’ordre $6561$, avec égalité du rang des relations et des générateurs $d_2(G)=d_1(G)=3$, et des noyaux de transfert harmonieusement équilibrés $\varkappa (G)\in S_{13}$. Le résultat dépend de calculs fait sous l’hypothèse de Riemann généralisée.

Publié le :
DOI : 10.5802/pmb.60
Classification : 20D15, 20E22, 20F05, 11R16, 11R29, 11R32, 11R37
Keywords: Finite $3$-groups, elementary tricyclic commutator quotient, relation rank, closed groups, Schur groups, Andozhskii–Tsvetkov groups, maximal and second maximal subgroups, kernels of Artin transfers, abelian quotient invariants, rank distribution, $p$-group generation algorithm, descendant tree, cyclic cubic number fields, harmonically balanced capitulation, Galois groups, $3$-class field tower

Bill Allombert 1 ; Daniel C. Mayer 2

1 IMB/CNRS Université de Bordeaux 351 cours de la Libération 33405 Bordeaux France
2 Naglergasse 53 8010 Graz Austria
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{PMB_2025____21_0,
     author = {Bill Allombert and Daniel C. Mayer},
     title = {Corps de nombres cubiques cycliques  ayant une capitulation harmonieusement \'equilibr\'ee},
     journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres},
     pages = {21--46},
     publisher = {Presses universitaires de Franche-Comt\'e},
     year = {2025},
     doi = {10.5802/pmb.60},
     language = {en},
     url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.60/}
}
TY  - JOUR
AU  - Bill Allombert
AU  - Daniel C. Mayer
TI  - Corps de nombres cubiques cycliques  ayant une capitulation harmonieusement équilibrée
JO  - Publications mathématiques de Besançon. Algèbre et théorie des nombres
PY  - 2025
SP  - 21
EP  - 46
PB  - Presses universitaires de Franche-Comté
UR  - https://pmb.centre-mersenne.org/articles/10.5802/pmb.60/
DO  - 10.5802/pmb.60
LA  - en
ID  - PMB_2025____21_0
ER  - 
%0 Journal Article
%A Bill Allombert
%A Daniel C. Mayer
%T Corps de nombres cubiques cycliques  ayant une capitulation harmonieusement équilibrée
%J Publications mathématiques de Besançon. Algèbre et théorie des nombres
%D 2025
%P 21-46
%I Presses universitaires de Franche-Comté
%U https://pmb.centre-mersenne.org/articles/10.5802/pmb.60/
%R 10.5802/pmb.60
%G en
%F PMB_2025____21_0
Bill Allombert; Daniel C. Mayer. Corps de nombres cubiques cycliques  ayant une capitulation harmonieusement équilibrée. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2025), pp. 21-46. doi : 10.5802/pmb.60. https://pmb.centre-mersenne.org/articles/10.5802/pmb.60/

[1] I. V. Andozhskij On some classes of closed pro-p-groups, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 39 (1975) no. 4, pp. 707-738 | MR

[2] I. V. Andozhskij; V. M. Tsvetkov On a series of finite closed p-groups, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 38 (1974) no. 2, pp. 278-290 | MR | Zbl

[3] Siham Aouissi; Daniel C. Mayer A group theoretic approach to cyclic cubic fields, Mathematics, Volume 12 (2024) no. 1, p. 126 | DOI

[4] Maurice Arrigoni On Schur σ-groups, Math. Nachr., Volume 192 (1998), pp. 71-89 | DOI | MR | Zbl

[5] Emil Artin Beweis des allgemeinen Reziprozitätsgesetzes, Abh. Hamb., Volume 5 (1927), pp. 353-363 | DOI | Zbl

[6] Emil Artin Idealklassen in Oberkörpern und allgemeines Reziprozitätsgesetz, Abh. Hamb., Volume 7 (1929), pp. 46-51 | DOI | Zbl

[7] Mohammed Ayadi Sur la capitulation des 3-classes d’idéaux d’un corps cubique cyclique, Ph. D. Thesis, Université Laval, Québec (1995)

[8] Mohammed Ayadi; Abdelmalek Azizi; Moulay Chrif Ismaili The capitulation problem for certain number fields, Class field theory – its centenary and prospect (Advanced Studies in Pure Mathematics), Volume 30, Mathematical Society of Japan, 2001, pp. 467-482 | DOI | Zbl

[9] Karim Belabas; Francisco Diaz y Diaz; Eduardo Friedman Small generators of the ideal class group, Math. Comput., Volume 77 (2008) no. 262, pp. 1185-1197 | DOI | MR | Zbl

[10] Karim Belabas; Eduardo Friedman Computing the residue of the Dedekind zeta function, Math. Comput., Volume 84 (2015) no. 291, pp. 357-369 | DOI | MR | Zbl

[11] Hans Ulrich Besche; Bettina Eick; Eamonn A. O’Brien A millennium project: constructing small groups, Int. J. Algebra Comput., Volume 12 (2002) no. 5, pp. 623-644 | DOI | MR | Zbl

[12] Hans Ulrich Besche; Bettina Eick; Eamonn A. O’Brien The SmallGroups Library — a Library of Groups of Small Order, 2005 (an accepted and refereed GAP package, available also in Magma)

[13] Johannes Buchmann A subexponential algorithm for the determination of class groups and regulators of algebraic number fields, Séminaire de théorie des nombres, Paris, France 1988-1989 (Progress in Mathematics), Volume 91, Birkhäuser, 1990, pp. 27-41 | MR | Zbl

[14] Henri Cohen A course in computational algebraic number theory, Graduate Texts in Mathematics, 138, Springer, 2000 | Numdam | MR | Zbl

[15] Henri Cohen; Francisco Diaz y Diaz; Michel Olivier Subexponential algorithms for class group and unit computations, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 433-441 | DOI | MR | Zbl

[16] Claus Fieker Computing class fields via the Artin map, Math. Comput., Volume 70 (2001) no. 235, pp. 1293-1303 | DOI | MR | Zbl

[17] G. Gamble; W. Nickel; E. A. O’Brien ANU p-Quotient — p-Quotient and p-Group Generation Algorithms, 2006 (an accepted GAP package, available also in Magma)

[18] Georges Gras Sur les -classes d’idéaux dans les extensions cycliques relatives de degré premier , Ann. Inst. Fourier, Volume 23 (1973) no. 4, pp. 1-44 | DOI | MR | Zbl

[19] Loïc Grenié; Giuseppe Molteni An improvement to an algorithm of Belabas, Diaz y Diaz and Friedman (2016) | arXiv

[20] Derek F. Holt; Bettina Eick; Eamonn A. O’Brien Handbook of computational group theory, Discrete Mathematics and its Applications, Chapman & Hall/CRC, 2005 | DOI | MR | Zbl

[21] Helmut Koch; Boris B. Venkov Über den p-Klassenkörperturm eines imaginär-quadratischen Zahlkörpers, Journées arithmétiques de Bordeaux, 27 mai - 1er juin 1974 (Astérisque), Volume 24-25, Société Mathématique de France, 1975, pp. 57-67 | Numdam | MR | Zbl

[22] The Magma Group Magma, Data for groups of order 3 8 , data3to8.tar.gz (available from http://magma.maths.usyd.edu.au)

[23] The Magma Group Magma Computational Algebra System, Version 2.28-6, 2024 (available from http://magma.maths.usyd.edu.au)

[24] Daniel C. Mayer The second p-class group of a number field, Int. J. Number Theory, Volume 8 (2012) no. 2, pp. 471-505 | DOI | MR | Zbl

[25] Daniel C. Mayer Transfers of metabelian p-groups, Monatsh. Math., Volume 166 (2012) no. 3-4, pp. 467-495 | DOI | MR | Zbl

[26] Daniel C. Mayer Index-p abelianization data of p-class tower groups, Adv. Pure Math., Volume 5 (2015) no. 5, pp. 286-313 (Special Issue on Number Theory and Cryptography) | DOI

[27] Daniel C. Mayer New number fields with known p-class tower, Tatra Mt. Math. Publ., Volume 64 (2015), pp. 21-57 (Special Issue on Number Theory and Cryptology ’15) | DOI | MR | Zbl

[28] Daniel C. Mayer Artin transfer patterns on descendant trees of finite p-groups, Adv. Pure Math., Volume 6 (2016) no. 2, pp. 66-104 (Special Issue on Number Theory) | DOI

[29] Daniel C. Mayer Recent progress in determining p-class field towers, Gulf J. Math., Volume 4 (2016) no. 4, pp. 74-102 | MR | Zbl

[30] Daniel C. Mayer Recent progress in determining p-class field towers, 1st International Colloquium of Algebra, Number Theory, Cryptography and Information Security (ANCI) 2016, Faculté Polydisciplinaire de Taza, Université Sidi Mohamed Ben Abdellah, Fès, Morocco (2016) (invited keynote 12 November 2016, available from http://www.algebra.at/ANCI2016DCM.pdf)

[31] Daniel C. Mayer Criteria for three-stage towers of p-class fields, Adv. Pure Math., Volume 7 (2017) no. 2, pp. 135-179 (Special Issue on Number Theory, February 2017) | DOI

[32] Daniel C. Mayer Successive approximation of p-class towers, Adv. Pure Math., Volume 7 (2017) no. 12, pp. 660-685 (Special Issue on Abstract Algebra) | DOI

[33] Daniel C. Mayer Pattern recognition via Artin transfers applied to class field towers, 3rd International Conference on Mathematics and its Applications (ICMA) 2020, Faculté des Sciences d’ Ain Chock Casablanca (FSAC), Université Hassan II, Casablanca, Morocco (2020) (invited keynote 28 February 2020, available from http://www.algebra.at/DCM@ICMA2020Casablanca.pdf)

[34] Daniel C. Mayer Theoretical and experimental approach to p-class field towers of cyclic cubic number fields, Sixièmes Journées d’Algèbre, Théorie des Nombres et leurs Applications (JATNA) 2022, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco (2022) (four invited keynotes 25–26 November 2022, available from http://www.algebra.at/CyclicCubicTheoryAndExperiment.pdf)

[35] Katsuya Miyake Algebraic investigations of Hilbert’s Theorem 94, the principal ideal theorem and the capitulation problem, Expo. Math., Volume 7 (1989) no. 4, pp. 289-346 | MR | Zbl

[36] Michael F. Newman Determination of groups of prime-power order, Group Theory, Canberra, 1975 (Lecture Notes in Mathematics), Volume 573, Springer, 1977, pp. 73-84 | MR | Zbl

[37] Eamonn A. O’Brien The p-group generation algorithm, J. Symb. Comput., Volume 9 (1990) no. 5-6, pp. 677-698 | DOI | MR | Zbl

[38] The PARI Group PARI/GP version 2.16.1, 2024 (available from http://pari.math.u-bordeaux.fr/)

[39] Charles J. Parry Bicyclic Bicubic Fields, Can. J. Math., Volume 42 (1990) no. 3, pp. 491-507 | DOI | MR | Zbl

[40] Arnold Scholz; Olga Taussky Die Hauptideale der kubischen Klassenkörper imaginär quadratischer Zahlkörper: ihre rechnerische Bestimmung und ihr Einfluß auf den Klassenkörperturm, J. Reine Angew. Math., Volume 171 (1934), pp. 19-41 | MR | Zbl

[41] René Schoof Infinite class field towers of quadratic fields, J. Reine Angew. Math., Volume 372 (1986), pp. 209-220 | MR | Zbl

[42] Igor R. Shafarevich Extensions with given points of ramification, Publ. Math., Inst. Hautes Étud. Sci., Volume 18 (1963), pp. 71-92 English transl. by J. W. S. Cassels in Amer. Math. Soc. Transl., II. Ser.,59 (1966), p. 128–149

[43] N. J. A. Sloane The On-Line Encyclopedia of Integer Sequences, 2023 (http://oeis.org)

[44] Olga Taussky A remark concerning Hilbert’s Theorem 94, J. Reine Angew. Math., Volume 239-240 (1970), pp. 435-438 | MR | Zbl

[45] G. F. Voronoĭ Ob odnom obobshchenii algorifma nepreryvnykh drobeĭ (On a generalization of the algorithm of continued fractions), Ph. D. Thesis, Warsaw (1896) (Russian)

Cité par Sources :