For a fixed prime $p$ congruent to $1$ modulo $4$ we define the modular curve $X_{H}(p )$ associated to the subgroup of non-zero squares modulo $p$. In this paper we compute the cuspidal group for all such curves of genus $g$, $2 \le g \le 10$ and compare this with the torsion group of the Jacobian $J_{H}(\mathbb{Q}(\sqrt{p} ))_{\mathrm{tors}}$.
Soit p un nombre premier, égal à $1 \bmod 4$, et $X_{H}(p)$ la courbe modulaire correspondant au groupe des carrés $\bmod \ p$. Dans cet article, nous calculons le groupe cuspidal de $X_{H}(p)$ et le comparons au groupe de torsion de la Jacobienne $J_{H}(p)(\mathbb{Q}(\sqrt{p})_{\mathrm{tors}}$.
Keywords: Modular Jacobians, Cuspidal Subgroup
Elvira Lupoian 1

@article{PMB_2025____97_0, author = {Elvira Lupoian}, title = {Computing the {Cuspidal} {Subgroup} of the {Modular} {Jacobian} $J_{H}(p)$}, journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres}, pages = {97--113}, publisher = {Presses universitaires de Franche-Comt\'e}, year = {2025}, doi = {10.5802/pmb.63}, language = {en}, url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.63/} }
TY - JOUR AU - Elvira Lupoian TI - Computing the Cuspidal Subgroup of the Modular Jacobian $J_{H}(p)$ JO - Publications mathématiques de Besançon. Algèbre et théorie des nombres PY - 2025 SP - 97 EP - 113 PB - Presses universitaires de Franche-Comté UR - https://pmb.centre-mersenne.org/articles/10.5802/pmb.63/ DO - 10.5802/pmb.63 LA - en ID - PMB_2025____97_0 ER -
%0 Journal Article %A Elvira Lupoian %T Computing the Cuspidal Subgroup of the Modular Jacobian $J_{H}(p)$ %J Publications mathématiques de Besançon. Algèbre et théorie des nombres %D 2025 %P 97-113 %I Presses universitaires de Franche-Comté %U https://pmb.centre-mersenne.org/articles/10.5802/pmb.63/ %R 10.5802/pmb.63 %G en %F PMB_2025____97_0
Elvira Lupoian. Computing the Cuspidal Subgroup of the Modular Jacobian $J_{H}(p)$. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2025), pp. 97-113. doi : 10.5802/pmb.63. https://pmb.centre-mersenne.org/articles/10.5802/pmb.63/
[1] Cuspidal Rational Torsion Subgroup of of Level , Taiwanese J. Math., Volume 15 (2011) no. 3, pp. 1305-1323 | MR | Zbl
[2] Two theorems on modular curves, Funkts. Anal. Prilozh., Volume 7 (1973) no. 2, pp. 83-84 | MR
[3] Cuspidal divisor class groups of modular curves, Algebraic number theory and Diophantine analysis (Graz, 1998), Walter de Gruyter, 2011, pp. 163-189 | MR | Zbl
[4] Galois properties of torsion points on abelian varieties, Invent. Math., Volume 62 (1981) no. 3, pp. 481-502 | DOI | MR | Zbl
[5] Courbes modulaires de genre , Bull. Soc. Math. Fr., Suppl., Mém., Volume 43 (1975), p. 80 (supplément au Bull. Soc. Math. France, Tome 103, no. 3) | MR | Zbl
[6] Torsion points on the modular jacobian , Compos. Math., Volume 96 (1995) no. 2, pp. 149-172 | MR | Zbl
[7] Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 36 (1972), pp. 19-66 | MR | Zbl
[8] Eisenstein ideals and the rational torsion subgroups of modular Jacobian varieties II, Tokyo J. Math., Volume 37 (2014) no. 2, pp. 273-318 | MR | Zbl
[9] Modular curves and the Eisenstein ideal, Publ. Math., Inst. Hautes Étud. Sci., Volume 47 (1977), p. 33-186 (1978) (with an appendix by Mazur and M. Rapoport) | DOI | Numdam | MR | Zbl
[10] Rational points on certain elliptic modular curves, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), American Mathematical Society (1973), pp. 221-231 | MR | Zbl
[11] Quadratic points on modular curves, Math. Comput., Volume 88 (2019) no. 319, pp. 2461-2484 | DOI | MR | Zbl
[12] La courbe modulaire et sa jacobienne, J. Number Theory, Volume 25 (1987) no. 1, pp. 112-131 | DOI | MR | Zbl
[13] Dimensions of spaces of modular forms for , Acta Arith., Volume 145 (2010), pp. 373-395 | DOI | MR | Zbl
[14] Another look at rational torsion of modular Jacobians, Proc. Natl. Acad. Sci. USA, Volume 119 (2022) no. 41, e2210032119, 8 pages | DOI | MR | Zbl
[15] Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, 11, Princeton University Press, 1971 | Zbl
[16] Explicit arithmetic of modular curves (2019) (Summer school notes)
[17] Explicit approaches to modular abelian varieties, Ph. D. Thesis, University of California, Berkeley (2000), 119 pages | MR
[18] Arithmetic on modular curves, Progress in Mathematics, 20, Springer, 2012 | MR
[19] Cuspidal class number formula for the modular curves , J. Algebra, Volume 151 (1992) no. 2, pp. 348-374 | DOI | MR | Zbl
[20] The Cuspidal Class Number Formula for the Modular Curves with M Square-Free, J. Algebra, Volume 193 (1997) no. 1, pp. 180-213 | DOI | MR | Zbl
[21] The rational cuspidal divisor class group of , J. Number Theory, Volume 242 (2023), pp. 278-401 | MR | Zbl
[22] A Cuspidal Class Number Formula for the Modular Curves ., Math. Ann., Volume 250 (1980), pp. 197-216 | MR | Zbl
Cité par Sources :