Computing the Cuspidal Subgroup of the Modular Jacobian $J_{H}(p)$
Publications mathématiques de Besançon. Algèbre et théorie des nombres (2025), pp. 97-113.

For a fixed prime $p$ congruent to $1$ modulo $4$ we define the modular curve $X_{H}(p )$ associated to the subgroup of non-zero squares modulo $p$. In this paper we compute the cuspidal group for all such curves of genus $g$, $2 \le g \le 10$ and compare this with the torsion group of the Jacobian $J_{H}(\mathbb{Q}(\sqrt{p} ))_{\mathrm{tors}}$.

Soit p un nombre premier, égal à $1 \bmod 4$, et $X_{H}(p)$ la courbe modulaire correspondant au groupe des carrés $\bmod \ p$. Dans cet article, nous calculons le groupe cuspidal de $X_{H}(p)$ et le comparons au groupe de torsion de la Jacobienne $J_{H}(p)(\mathbb{Q}(\sqrt{p})_{\mathrm{tors}}$.

Publié le :
DOI : 10.5802/pmb.63
Classification : 11Y99, 11G10
Keywords: Modular Jacobians, Cuspidal Subgroup

Elvira Lupoian 1

1 Department of Mathematics, University College London, London, United Kingdom
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{PMB_2025____97_0,
     author = {Elvira Lupoian},
     title = {Computing the {Cuspidal} {Subgroup} of the {Modular} {Jacobian} $J_{H}(p)$},
     journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres},
     pages = {97--113},
     publisher = {Presses universitaires de Franche-Comt\'e},
     year = {2025},
     doi = {10.5802/pmb.63},
     language = {en},
     url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.63/}
}
TY  - JOUR
AU  - Elvira Lupoian
TI  - Computing the Cuspidal Subgroup of the Modular Jacobian $J_{H}(p)$
JO  - Publications mathématiques de Besançon. Algèbre et théorie des nombres
PY  - 2025
SP  - 97
EP  - 113
PB  - Presses universitaires de Franche-Comté
UR  - https://pmb.centre-mersenne.org/articles/10.5802/pmb.63/
DO  - 10.5802/pmb.63
LA  - en
ID  - PMB_2025____97_0
ER  - 
%0 Journal Article
%A Elvira Lupoian
%T Computing the Cuspidal Subgroup of the Modular Jacobian $J_{H}(p)$
%J Publications mathématiques de Besançon. Algèbre et théorie des nombres
%D 2025
%P 97-113
%I Presses universitaires de Franche-Comté
%U https://pmb.centre-mersenne.org/articles/10.5802/pmb.63/
%R 10.5802/pmb.63
%G en
%F PMB_2025____97_0
Elvira Lupoian. Computing the Cuspidal Subgroup of the Modular Jacobian $J_{H}(p)$. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2025), pp. 97-113. doi : 10.5802/pmb.63. https://pmb.centre-mersenne.org/articles/10.5802/pmb.63/

[1] Yao-Han Chen Cuspidal Rational Torsion Subgroup of J(Γ) of Level P, Taiwanese J. Math., Volume 15 (2011) no. 3, pp. 1305-1323 | MR | Zbl

[2] Vladimir G. Drinfelʼd Two theorems on modular curves, Funkts. Anal. Prilozh., Volume 7 (1973) no. 2, pp. 83-84 | MR

[3] Ernst-Ulrich Gekeler Cuspidal divisor class groups of modular curves, Algebraic number theory and Diophantine analysis (Graz, 1998), Walter de Gruyter, 2011, pp. 163-189 | MR | Zbl

[4] Nicholas M. Katz Galois properties of torsion points on abelian varieties, Invent. Math., Volume 62 (1981) no. 3, pp. 481-502 | DOI | MR | Zbl

[5] Gerard Ligozat Courbes modulaires de genre 1, Bull. Soc. Math. Fr., Suppl., Mém., Volume 43 (1975), p. 80 (supplément au Bull. Soc. Math. France, Tome 103, no. 3) | MR | Zbl

[6] Dino J Lorenzini Torsion points on the modular jacobian J 0 (N), Compos. Math., Volume 96 (1995) no. 2, pp. 149-172 | MR | Zbl

[7] Yuriĭ I. Manin Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 36 (1972), pp. 19-66 | MR | Zbl

[8] OHTA Masami Eisenstein ideals and the rational torsion subgroups of modular Jacobian varieties II, Tokyo J. Math., Volume 37 (2014) no. 2, pp. 273-318 | MR | Zbl

[9] Barry Mazur Modular curves and the Eisenstein ideal, Publ. Math., Inst. Hautes Étud. Sci., Volume 47 (1977), p. 33-186 (1978) (with an appendix by Mazur and M. Rapoport) | DOI | Numdam | MR | Zbl

[10] Andrew P. Ogg Rational points on certain elliptic modular curves, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), American Mathematical Society (1973), pp. 221-231 | MR | Zbl

[11] Ekin Ozman; Samir Siksek Quadratic points on modular curves, Math. Comput., Volume 88 (2019) no. 319, pp. 2461-2484 | DOI | MR | Zbl

[12] Dimitrios Poulakis La courbe modulaire X 0 (125) et sa jacobienne, J. Number Theory, Volume 25 (1987) no. 1, pp. 112-131 | DOI | MR | Zbl

[13] Jordi Quer Dimensions of spaces of modular forms for Γ H (N), Acta Arith., Volume 145 (2010), pp. 373-395 | DOI | MR | Zbl

[14] Kenneth A. Ribet; Preston Wake Another look at rational torsion of modular Jacobians, Proc. Natl. Acad. Sci. USA, Volume 119 (2022) no. 41, e2210032119, 8 pages | DOI | MR | Zbl

[15] Goro Shimura Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, 11, Princeton University Press, 1971 | Zbl

[16] Samir Siksek Explicit arithmetic of modular curves (2019) (Summer school notes)

[17] William Arthur Stein Explicit approaches to modular abelian varieties, Ph. D. Thesis, University of California, Berkeley (2000), 119 pages | MR

[18] Glenn Stevens Arithmetic on modular curves, Progress in Mathematics, 20, Springer, 2012 | MR

[19] Toshikazu Takagi Cuspidal class number formula for the modular curves X 1 (p), J. Algebra, Volume 151 (1992) no. 2, pp. 348-374 | DOI | MR | Zbl

[20] Toshikazu Takagi The Cuspidal Class Number Formula for the Modular Curves X 0 (M) with M Square-Free, J. Algebra, Volume 193 (1997) no. 1, pp. 180-213 | DOI | MR | Zbl

[21] Hwajong Yoo The rational cuspidal divisor class group of X 0 (N), J. Number Theory, Volume 242 (2023), pp. 278-401 | MR | Zbl

[22] Jing Yu A Cuspidal Class Number Formula for the Modular Curves X 1 (N)., Math. Ann., Volume 250 (1980), pp. 197-216 | MR | Zbl

Cité par Sources :