This text is a survey on the question of the rank of an abelian variety defined over a one variable function field over a base field . We discuss not only an upper bound for this rank, but also study the behavior of this bound after taking a finite and abelian extension of . We ask ourselves : what happens if this hypothesis is suppressed? In a particular case, we discuss the validity of the Lang-Néron theorem. This validity depends on additional hypotheses. At the end of the text, we discuss situations in which these hypotheses are satisfied.
Ce texte est un survey concernant la question du rang d’une variété abélienne sur un corps de fonctions en une variable sur un corps de base . Il s’agit non seulement de discuter une borne supérieure pour ce rang, mais aussi d’étudier le comportement de cette borne si on prend une extension abélienne finie de . On se demande aussi : que se passe-t-il quand on enlève cette dernière hypothèse ? Dans un cas particulier, on discute de la validité d’un analogue du théorème de Lang-Néron. Pour cela, il nous faudra des hypothèses additionnelles. À la fin du texte, nous discutons des situations où ces hypothèses sont vérifiées.
Published online:
DOI: 10.5802/pmb.7
Keywords: Abelian varieties, Tate’s conjecture, Selmer groups.
@article{PMB_2014___2_31_0, author = {Am{\'\i}lcar Pacheco}, title = {Sur le rang des vari\'et\'es ab\'eliennes sur un corps de fonctions}, journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres}, pages = {31--46}, publisher = {Presses universitaires de Franche-Comt\'e}, number = {2}, year = {2014}, doi = {10.5802/pmb.7}, zbl = {1366.11082}, language = {fr}, url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.7/} }
TY - JOUR AU - Amílcar Pacheco TI - Sur le rang des variétés abéliennes sur un corps de fonctions JO - Publications mathématiques de Besançon. Algèbre et théorie des nombres PY - 2014 SP - 31 EP - 46 IS - 2 PB - Presses universitaires de Franche-Comté UR - https://pmb.centre-mersenne.org/articles/10.5802/pmb.7/ DO - 10.5802/pmb.7 LA - fr ID - PMB_2014___2_31_0 ER -
%0 Journal Article %A Amílcar Pacheco %T Sur le rang des variétés abéliennes sur un corps de fonctions %J Publications mathématiques de Besançon. Algèbre et théorie des nombres %D 2014 %P 31-46 %N 2 %I Presses universitaires de Franche-Comté %U https://pmb.centre-mersenne.org/articles/10.5802/pmb.7/ %R 10.5802/pmb.7 %G fr %F PMB_2014___2_31_0
Amílcar Pacheco. Sur le rang des variétés abéliennes sur un corps de fonctions. Publications mathématiques de Besançon. Algèbre et théorie des nombres, no. 2 (2014), pp. 31-46. doi : 10.5802/pmb.7. https://pmb.centre-mersenne.org/articles/10.5802/pmb.7/
[Ba92] W. Bauer, On the conjecture of Birch and Swinnerton-Dyer for abelian varieties over function fields in characteristic , Invent. Math. 108 (1992), 263-287. | DOI | Zbl
[BoZa09] F.A.Bogomolov, Y.G.Zarhin, Ordinary reduction of K3 surfaces, Cent. Eur. J. Math. 7(2009), 206-213. | DOI | MR | Zbl
[CaCi93] F. Catanese, C. Ciliberto, Symmetric products of elliptic curves and surfaces of general type with , J. Alg. Geometry 2 (1993), 389-411. | Zbl
[Co06] B. Conrad, Chow’s -image and -trace, and the Lang-Néron theorem, Enseignement Mathématique 52 (2006), 37-108. | Zbl
[CoGr96] J. Coates, R. Greenberg, Kummer theory for abelian varieties over local fields, Inventiones Math. 124 (1996), 129-174. | DOI | MR | Zbl
[De74] P. Deligne, Conjectures de Weil I, Publ. Math. IHES 43 (1974) 273-307. | DOI | Numdam | Zbl
[De81] P. Deligne, Conjectures de Weil II, Publ. Math. IHES 52 (1981) 313-428. | DOI | Numdam
[El06] J. Ellenberg, Selmer groups and Mordell-Weil groups of elliptic curves over towers of function fields, Compositio Math. 142 (2006), 1215-1230. | DOI | MR | Zbl
[HiPaWa05] M. Hindry, A. Pacheco, R. Wazir, Fibrations et conjectures de Tate, J. Number Theory 112 (2005), 345-368. | DOI | MR
[Ho02] S. Howson, Euler characteristics as invariants of Iwasawa modules, Proc. London Math. Soc. 85 (2002), 634-658. | DOI | MR | Zbl
[Ka02] N. Katz, Twisted L-functions and monodromy, Annals Math. Studies, Princeton Univ. Press, number 150, 2002. | DOI | Zbl
[KP99] N. Katz, P. Sarnak, Random matrices, Frobenius eigenvalues and monodromy, AMS Coll. Pub. vol. 45, 1999. | DOI | Zbl
[KT03] K. Kato, F. Trihan, On the Birch and Swinnerton-Dyer conjecture in characteristic , Inventiones Math. 153 (2003), 537-592. | DOI | MR | Zbl
[Ly11] C. Lyons, Large monodromy for a family of surfaces of general type and some arithmetic application, preprint 2011, .
[Mi68] J. S. Milne, The Tate-Shafarevich group of constant abelian variety, Invent. Math. 6 (1968), 91-105. | DOI | Zbl
[Mi75] J. S. Milne, On a conjecture of Artin and Tate, Annals Math. 102 (1975), 517-533. | DOI | MR | Zbl
[Mi80] J. S. Milne, Étale cohomology, Princeton University Press, 1980. | DOI
[Mi81] J. S. Milne, Comparison between the Brauer group with the Tate-Šafarevič group, J. Fac. Sci. Univ. Tokyo, Sect. 1A 28 (1981), 735-743. | Zbl
[Na94] K. Nagao, Construction of high rank elliptic curves, Kobe J. Math. 11 (1994), 211-219. | Zbl
[Na97] K. Nagao, -rank of elliptic curves and certain limit coming from the local points, Manuscripta Math. 92 (1997), 13-32. | DOI | MR | Zbl
[Og62] A. P. Ogg, Cohomology of abelian varieties over function fields, Ann. Math. 76 (1962), 185-212. | DOI | MR | Zbl
[Pa05] A. Pacheco, On the rank of abelian varieties over function fields, Manuscripta Math. 118 (2005), 361-381. | DOI | MR | Zbl
[Pa09] A. Pacheco, Selmer groups of abelian varieties in extensions of function fields, Math. Zeitschrift 261 (2009), 787-804. | DOI | MR | Zbl
[Pa13] A. Pacheco, Rational points of Jacobian varieties in pro- towers of function fields, J. Number Theory 133 (2013), 3517-3523. | DOI | MR | Zbl
[Pi98] R. Pink, -adic monodromy groups, cocharacters and the Mumford-Tate conjecture, J. reine und angewandet Mathematik (Crelle) 495 (1998), 187-237. | DOI | Zbl
[Ra07] N. Ratazzi, Borne sur la torsion des variétés abéliennes de type CM, Ann. Éc. Normal Sup. Paris 40 (2007), 951-983. | DOI | Numdam | Zbl
[Ram89] D. Ramakrishnan, Regulators, algebraic cycles and values of -functions, in : M. Stein, R. Dennis (Eds.), Algebraic K-Theory and Algebraic Number Theory, American Mathematical Society, Contemp. Math. 83 (1989), 183-310. | DOI | Zbl
[Ray68] M. Raynaud, Caractéristique d’Euler-Poincaré d’un faisceau et cohomologie des variétés abéliennes, Sém. Bourbaki 1964/65, exp. 286, dans “Dix Exposés sur la cohomologie des schémas”, 1968. | Numdam
[Sc82] P. Schneider, Zur Vermutung von Birch undSwinnerton-Dyer über globalen Funktionenkörpern, Math. Ann. 260 (1982), 495-510. | DOI | Zbl
[Se68] J.-P. Serre, Abelian -adic representations and elliptic curves, 1968. | DOI
[Se72] J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331. | DOI | Zbl
[Se85] J.-P. Serre, Résumé des cours au Collège de France, 1984-85, Oeuvres IV, pp. 27-32. | DOI
[Se86] J.-P. Serre, Cohomologie galoisienne, Lec. Notes Math. 5, Springer-Verlag, 1986.
[SeTa68] J.-P. Serre, J. Tate, Good reduction of abelian varieties, Annals of Math. 88 (1968), 492-517. | DOI | MR | Zbl
[SGA 7] A. Grothendieck, Modèles de Néron et monodromie dans SGA 7, Groupes de Monodromie en Géométrie Algébrique, Exp. IX, Lect. Notes in Math 288 (1972), Springer-Verlag. | DOI
[SGA 4 1/2] P. Deligne, Cohomologie étale (Séminaire de Géométrie Algébrique 4 1/2), Lecture Notes in Math 569, Springer-Verlag, 1977. | DOI
[Sh61] G. Shimura, Y. Taniyama, Complex multiplication to abelian varieties and its applications to number theory, Publications of the Japan Mathematical Society, 1971. | Zbl
[Si04] J. Silverman, The rank of elliptic surfaces in unramified abelian towers over number fields, J. reine und angewandet Mathematik (Crelle) 577 (2004), 153-169. | DOI | MR | Zbl
[Ta65] J. Tate, Algebraic cycles and poles of zeta-functions, Arithmetical Algebraic Geometry, Harper and Row, New York, 1965, pp. 93-110.
[Ta66] J. Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Sém. Bourbaki, exp. 305 (1965/66). | Numdam | Zbl
[Ul02] D. Ulmer, Elliptic curves with high rank over function fields, Annals of Math. 155 (2002), 295-315. | DOI | MR | Zbl
Cited by Sources: