We generalize results about local heights previously proved in the case of discrete absolute values to arbitrary non-archimedean absolute values. First, this is done for the induction formula of Chambert-Loir and Thuillier. Then we prove the formula of Burgos–Philippon–Sombra for the toric local height of a proper normal toric variety in this more general setting. We apply the corresponding formula for Moriwaki’s global heights over a finitely generated field to a fibration which is generically toric. We illustrate the last result in a natural example where non-discrete non-archimedean absolute values really matter.
Nous généralisons des résultats concernant les hauteurs locales prouvés précédemment pour une valuation discrète au cas d’une valeur absolue ultramétrique quelconque. Nous traitons tout d’abord le case de la formule de récurrence de Chambert-Loir et Thuillier. Ensuite nous généralisons la formule de Burgos–Philippon–Sombra pour la hauteur locale torique d’une variété torique normale propre. Nous appliquons la formule correspondante de Moriwaki pour les hauteurs globales sur un corps de type fini au cas d’une fibration qui est génériquement torique. Nous illustrons ce dernier résultat par un exemple naturel où des valuations non discrètes jouent un rôle important.
Mots-clés : Toric geometry, local heights, berkovich spaces, Chambert-Loir measure, heights of varieties over finitely generated fields
@article{PMB_2017____5_0, author = {Walter Gubler and Julius Hertel}, title = {Local {Heights} of {Toric} {Varieties} over {Non-archimedean} {Fields}}, journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres}, pages = {5--77}, publisher = {Presses universitaires de Franche-Comt\'e}, year = {2017}, doi = {10.5802/pmb.15}, language = {en}, url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.15/} }
TY - JOUR AU - Walter Gubler AU - Julius Hertel TI - Local Heights of Toric Varieties over Non-archimedean Fields JO - Publications mathématiques de Besançon. Algèbre et théorie des nombres PY - 2017 SP - 5 EP - 77 PB - Presses universitaires de Franche-Comté UR - https://pmb.centre-mersenne.org/articles/10.5802/pmb.15/ DO - 10.5802/pmb.15 LA - en ID - PMB_2017____5_0 ER -
%0 Journal Article %A Walter Gubler %A Julius Hertel %T Local Heights of Toric Varieties over Non-archimedean Fields %J Publications mathématiques de Besançon. Algèbre et théorie des nombres %D 2017 %P 5-77 %I Presses universitaires de Franche-Comté %U https://pmb.centre-mersenne.org/articles/10.5802/pmb.15/ %R 10.5802/pmb.15 %G en %F PMB_2017____5_0
Walter Gubler; Julius Hertel. Local Heights of Toric Varieties over Non-archimedean Fields. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2017), pp. 5-77. doi : 10.5802/pmb.15. https://pmb.centre-mersenne.org/articles/10.5802/pmb.15/
[1] Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, Volume 33, American Mathematical Society, 1990, ix+169 pages | MR | Zbl
[2] Étale cohomology for non-Archimedean analytic spaces, Publ. Math., Inst. Hautes Étud. Sci., Volume 78 (1993) no. 78, pp. 5-161 | DOI | Numdam | MR | Zbl
[3] Smooth -adic analytic spaces are locally contractible, Invent. Math., Volume 137 (1999) no. 1, pp. 1-84 | DOI | MR | Zbl
[4] Smooth -adic analytic spaces are locally contractible. II, Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter, 2004, pp. 293-370 | MR | Zbl
[5] Heights in Diophantine Geometry, New Mathematical Monographs, Volume 4, Cambridge University Press, 2006, xvi+652 pages | MR | Zbl
[6] Non-Archimedean analysis, Grundlehren der Mathematischen Wissenschaften, Volume 261, Springer, 1984, xii+436 pages | MR | Zbl
[7] Stable reduction and uniformization of abelian varieties. I, Math. Ann., Volume 270 (1985) no. 3, pp. 349-379 | DOI | MR | Zbl
[8] Formal and rigid geometry. II. Flattening techniques, Math. Ann., Volume 296 (1993) no. 3, pp. 403-429 | DOI | MR | Zbl
[9] Formal and rigid geometry. IV. The reduced fibre theorem, Invent. Math., Volume 119 (1995) no. 2, pp. 361-398 | DOI | MR | Zbl
[10] Heights of projective varieties and positive Green forms, J. Am. Math. Soc., Volume 7 (1994) no. 4, pp. 903-1027 | DOI | MR | Zbl
[11] Arithmetic geometry of toric varieties. Metrics, measures and heights, Astérisque, Volume 360, Société Mathématique de France, 2014, vi+222 pages | Zbl
[12] Height of varieties over finitely generated fields, Kyoto J. Math., Volume 56 (2016) no. 1, pp. 13-32 | DOI | MR | Zbl
[13] When do the recession cones of a polyhedral complex form a fan?, Discrete Comput. Geom., Volume 46 (2011) no. 4, pp. 789-798 | DOI | MR | Zbl
[14] Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math., Volume 595 (2006), pp. 215-235 | Zbl
[15] Mesures de Mahler et équidistribution logarithmique, Ann. Inst. Fourier, Volume 59 (2009) no. 3, pp. 977-1014 | DOI | Numdam | Zbl
[16] Toric Varieties, Graduate studies in Mathematics, Volume 124, American Mathematical Society, 2011, xxiv+841 pages | MR | Zbl
[17] Les espaces de Berkovich sont excellents, Ann. Inst. Fourier, Volume 59 (2009) no. 4, pp. 1443-1552 | DOI | Numdam | MR | Zbl
[18] Diophantine approximation on abelian varieties, Ann. Math., Volume 133 (1991) no. 3, pp. 549-576 | DOI | MR | Zbl
[19] Introduction to Toric Varieties, Annals of mathematics studies, Volume 131, Princeton University Press, 1993, xi+157 pages | MR | Zbl
[20] Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, Volume 2, Springer, 1998, xiii+470 pages | MR | Zbl
[21] Arithmetic intersection theory, Publ. Math., Inst. Hautes Étud. Sci., Volume 72 (1990) no. 72, pp. 93-174 | Numdam | MR | Zbl
[22] Algebraic Geometry I: Schemes With Examples and Exercises, Advanced Lectures in Mathematics, Vieweg+Teubner Verlag, 2010, vii+615 pages | Zbl
[23] Éléments de géométrie algébrique: I. Le langage des schémas, Publ. Math., Inst. Hautes Étud. Sci., Volume 4 (1960), pp. 5-228 | DOI | Numdam | Zbl
[24] Heights of subvarieties over -fields, Arithmetic geometry (Cortona, 1994) (Sympos. Math.) Volume 37 (1997), pp. 190-227 | MR | Zbl
[25] Local heights of subvarieties over non-Archimedean fields, J. Reine Angew. Math., Volume 498 (1998), pp. 61-113 | DOI | MR | Zbl
[26] Basic Properties of Heights of Subvarieties (2002) (Ph. D. Thesis) | DOI
[27] Local and Canonical Heights of Subvarieties, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 2 (2003) no. 4, pp. 711-760 | Numdam | MR | Zbl
[28] The Bogomolov conjecture for totally degenerate abelian varieties, Invent. Math., Volume 169 (2007) no. 2, pp. 377-400 | DOI | MR | Zbl
[29] Tropical varieties for non-Archimedean analytic spaces, Invent. Math., Volume 169 (2007) no. 2, pp. 321-376 | DOI | MR | Zbl
[30] Equidistribution over function fields, Manuscr. Math., Volume 127 (2008) no. 4, pp. 485-510 | DOI | MR | Zbl
[31] Non-Archimedean canonical measures on abelian varieties, Compos. Math., Volume 146 (2010) no. 3, pp. 683-730 | DOI | MR | Zbl
[32] A guide to tropicalizations, Algebraic and combinatorial aspects of tropical geometry (Contemporary Mathematics) Volume 589 (2013), pp. 125-189 | DOI | MR | Zbl
[33] Positivity properties of metrics and delta-forms (2015) (https://arxiv.org/abs/1509.09079v1)
[34] Skeletons and tropicalizations, Adv. Math., Volume 294 (2016), pp. 150-215 | DOI | MR | Zbl
[35] Classification of normal toric varieties over a valuation ring of rank one, Doc. Math., J. DMV, Volume 20 (2015), pp. 171-198 | MR | Zbl
[36] Tropical toric geometry, Toric topology (Contemporary Mathematics) Volume 460, American Mathematical Society, 2008, pp. 197-207 | DOI | MR | Zbl
[37] Uniform bounds for the number of rational points on curves of small Mordell–Weil rank, Duke Math. J., Volume 165 (2016) no. 16, pp. 3189-3240 | DOI | MR | Zbl
[38] Toroidal Embeddings I, Lecture Notes in Mathematics, Volume 339, Springer, 1973, viii+209 pages | MR | Zbl
[39] Toward a numerical theory of ampleness, Ann. Math., Volume 84 (1966), pp. 293-344 | DOI | MR | Zbl
[40] Arithmetic height functions over finitely generated fields, Invent. Math., Volume 140 (2000) no. 1, pp. 101-142 | DOI | MR | Zbl
[41] Analytification is the limit of all tropicalizations, Math. Res. Lett., Volume 16 (2009) no. 2-3, pp. 543-556 | DOI | MR | Zbl
[42] Convex analysis, Princeton Mathematical Series, Volume 28, Princeton University Press, 1970, xviii+451 pages | MR | Zbl
[43] Stacks Project, 2015 (http://stacks.math.columbia.edu)
[44] Small points and adelic metrics, J. Algebr. Geom., Volume 4 (1995) no. 2, pp. 281-300 | MR | Zbl
[45] Equidistribution of small points on abelian varieties, Ann. Math., Volume 147 (1998) no. 1, pp. 159-165 | DOI | MR | Zbl
Cited by Sources: