Arithmetic Properties of Generalized Rikuna Polynomials
Publications mathématiques de Besançon. Algèbre et théorie des nombres, no. 1 (2014), pp. 19-33.

Fix an integer 3. Rikuna introduced a polynomial r(x,t) defined over a function field K(t) whose Galois group is cyclic of order , where K satisfies some mild hypotheses. In this paper we define the family of generalized Rikuna polynomials {r n (x,t)} n1 of degree n . The r n (x,t) are constructed iteratively from the r(x,t). We compute the Galois groups of the r n (x,t) for odd over an arbitrary base field and give applications to arithmetic dynamical systems.

Soit 3 un nombre entier fixé. Rikuna a défini un polynôme r(x,t) sur un corps de fonctions K(t) dont le groupe de Galois est cyclique d’ordre , où K satisfait à certaines hypothèses pas très restrictives. Dans cet article, nous définissons la famille des polynômes de Rikuna généralisés {r n (x,t)} n1 de degré n . Les r n (x,t) sont construits de manière itérative à partir de r(x,t). Nous calculons les groupes de Galois des r n (x,t) pour impair sur un corps de base arbitraire et donnons des applications aux systèmes dynamiques arithmétiques.

Received:
Published online:
DOI: 10.5802/pmb.2
Classification: 11R32, 11S20
Keywords: postcritically finite, Galois group, cyclotomic field
Z. Chonoles 1; J. Cullinan 2; H. Hausman 3; A.M. Pacelli 3; S. Pegado 3; F. Wei 4

1 Department of Mathematics, The University of Chicago, 5734 S. University Avenue Chicago, IL 60637, USA
2 Department of Mathematics, Bard College, Annandale-On-Hudson, NY 12504, USA
3 Department of Mathematics, Williams College, Williamstown, MA 01267, USA
4 Department of Mathematics, Harvard University, One Oxford Street, Cambridge MA 02138, USA
@article{PMB_2014___1_19_0,
     author = {Z. Chonoles and J. Cullinan and H. Hausman and A.M. Pacelli and S. Pegado and F. Wei},
     title = {Arithmetic {Properties} of {Generalized} {Rikuna} {Polynomials}},
     journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres},
     pages = {19--33},
     publisher = {Presses universitaires de Franche-Comt\'e},
     number = {1},
     year = {2014},
     doi = {10.5802/pmb.2},
     zbl = {1367.11080},
     language = {en},
     url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.2/}
}
TY  - JOUR
AU  - Z. Chonoles
AU  - J. Cullinan
AU  - H. Hausman
AU  - A.M. Pacelli
AU  - S. Pegado
AU  - F. Wei
TI  - Arithmetic Properties of Generalized Rikuna Polynomials
JO  - Publications mathématiques de Besançon. Algèbre et théorie des nombres
PY  - 2014
SP  - 19
EP  - 33
IS  - 1
PB  - Presses universitaires de Franche-Comté
UR  - https://pmb.centre-mersenne.org/articles/10.5802/pmb.2/
UR  - https://zbmath.org/?q=an%3A1367.11080
UR  - https://doi.org/10.5802/pmb.2
DO  - 10.5802/pmb.2
LA  - en
ID  - PMB_2014___1_19_0
ER  - 
%0 Journal Article
%A Z. Chonoles
%A J. Cullinan
%A H. Hausman
%A A.M. Pacelli
%A S. Pegado
%A F. Wei
%T Arithmetic Properties of Generalized Rikuna Polynomials
%J Publications mathématiques de Besançon. Algèbre et théorie des nombres
%D 2014
%P 19-33
%N 1
%I Presses universitaires de Franche-Comté
%U https://doi.org/10.5802/pmb.2
%R 10.5802/pmb.2
%G en
%F PMB_2014___1_19_0
Z. Chonoles; J. Cullinan; H. Hausman; A.M. Pacelli; S. Pegado; F. Wei. Arithmetic Properties of Generalized Rikuna Polynomials. Publications mathématiques de Besançon. Algèbre et théorie des nombres, no. 1 (2014), pp. 19-33. doi : 10.5802/pmb.2. https://pmb.centre-mersenne.org/articles/10.5802/pmb.2/

[1] W. Aitken, F. Hajir, C. Maire. Finitely ramified iterated extensions. Int. Math. Res. Not. 2005, no. 14, 855-880. | DOI | Zbl

[2] J. Cullinan, F. Hajir. Ramification in iterated towers for rational functions. Manuscripta Math. 137 (2012), no. 3-4, 273-286. | DOI | MR | Zbl

[3] M. Daub, J. Lang, M. Merling, A. Pacelli, N. Pitiwan, M. Rosen. Function Fields with Class Number Indivisible by a Prime . Acta Arith. 150 (2011), no. 4, 339-359. | DOI | MR | Zbl

[4] R. Jones, J. Rouse. Iterated endomorphisms of abelian algebraic groups. Proc. Lond. Math. Soc. 100 (2010), no. 3, 763-794. | DOI | MR | Zbl

[5] Y. Kishi. A family of cyclic cubic polynomials whose roots are systems of fundamental units. J. Number Theory 102 (2003), no. 1, 90-106. | DOI | Zbl

[6] T. Komatsu. Arithmetic of Rikuna’s generic cyclic polynomial and generalization of Kummer theory. Manuscripta Math. 114 (2004) 265-279. | DOI | MR | Zbl

[7] S. Lang, Algebra, Graduate Texts in Mathematics 211. Springer-Verlag, New York, 2002. | DOI

[8] E. Lehmer. Connection between Gaussian periods and cyclic units. Math. Comp. 50 (1988), no. 182, 535-541. | DOI | MR | Zbl

[9] J. Neukirch, Algebraic Number Theory, Springer-Verlag, Berlin, 1999. | DOI | Zbl

[10] R.W.K. Odoni. The Galois theory of iterates and composites of polynomials. Proc. London. Math. Soc. 51 (1985), no. 3, 385-414. | DOI | MR | Zbl

[11] Y. Rikuna. On simple families of cyclic polynomials. Proc. Amer. Math. Soc. 130 (2002), no. 8, 2215-2218 | DOI | Zbl

[12] R. Schoof, L. Washington. Quintic polynomials and real cyclotomic fields with large class numbers. Math. Comp. 50 (1988), no. 182, 543-556. | DOI | MR | Zbl

[13] D. Shanks. The simplest cubic fields. Math. Comp. 28 (1974), 1137-1157 | DOI | MR | Zbl

[14] Y.Y. Shen, L.C. Washington. A family of real 2 n -tic fields. Trans. Amer. Math. Soc. 345 (1994), no. 1, 413-434. | DOI | Zbl

[15] Y.Y. Shen, L.C. Washington. A family of real p n -tic fields. Canad. J. Math. 47 (1995), no. 3, 655-672. | DOI | Zbl

[16] J. Silverman, The arithmetic of dynamical systems. Graduate Texts in Mathematics, 241. Springer, New York, 2007. | DOI | Zbl

Cited by Sources: