Fix an integer . Rikuna introduced a polynomial defined over a function field whose Galois group is cyclic of order , where satisfies some mild hypotheses. In this paper we define the family of generalized Rikuna polynomials of degree . The are constructed iteratively from the . We compute the Galois groups of the for odd over an arbitrary base field and give applications to arithmetic dynamical systems.
Soit un nombre entier fixé. Rikuna a défini un polynôme sur un corps de fonctions dont le groupe de Galois est cyclique d’ordre , où satisfait à certaines hypothèses pas très restrictives. Dans cet article, nous définissons la famille des polynômes de Rikuna généralisés de degré . Les sont construits de manière itérative à partir de . Nous calculons les groupes de Galois des pour impair sur un corps de base arbitraire et donnons des applications aux systèmes dynamiques arithmétiques.
Published online:
DOI: 10.5802/pmb.2
Keywords: postcritically finite, Galois group, cyclotomic field
Z. Chonoles 1; J. Cullinan 2; H. Hausman 3; A.M. Pacelli 3; S. Pegado 3; F. Wei 4
@article{PMB_2014___1_19_0, author = {Z. Chonoles and J. Cullinan and H. Hausman and A.M. Pacelli and S. Pegado and F. Wei}, title = {Arithmetic {Properties} of {Generalized} {Rikuna} {Polynomials}}, journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres}, pages = {19--33}, publisher = {Presses universitaires de Franche-Comt\'e}, number = {1}, year = {2014}, doi = {10.5802/pmb.2}, zbl = {1367.11080}, language = {en}, url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.2/} }
TY - JOUR AU - Z. Chonoles AU - J. Cullinan AU - H. Hausman AU - A.M. Pacelli AU - S. Pegado AU - F. Wei TI - Arithmetic Properties of Generalized Rikuna Polynomials JO - Publications mathématiques de Besançon. Algèbre et théorie des nombres PY - 2014 SP - 19 EP - 33 IS - 1 PB - Presses universitaires de Franche-Comté UR - https://pmb.centre-mersenne.org/articles/10.5802/pmb.2/ DO - 10.5802/pmb.2 LA - en ID - PMB_2014___1_19_0 ER -
%0 Journal Article %A Z. Chonoles %A J. Cullinan %A H. Hausman %A A.M. Pacelli %A S. Pegado %A F. Wei %T Arithmetic Properties of Generalized Rikuna Polynomials %J Publications mathématiques de Besançon. Algèbre et théorie des nombres %D 2014 %P 19-33 %N 1 %I Presses universitaires de Franche-Comté %U https://pmb.centre-mersenne.org/articles/10.5802/pmb.2/ %R 10.5802/pmb.2 %G en %F PMB_2014___1_19_0
Z. Chonoles; J. Cullinan; H. Hausman; A.M. Pacelli; S. Pegado; F. Wei. Arithmetic Properties of Generalized Rikuna Polynomials. Publications mathématiques de Besançon. Algèbre et théorie des nombres, no. 1 (2014), pp. 19-33. doi : 10.5802/pmb.2. https://pmb.centre-mersenne.org/articles/10.5802/pmb.2/
[1] W. Aitken, F. Hajir, C. Maire. Finitely ramified iterated extensions. Int. Math. Res. Not. 2005, no. 14, 855-880. | DOI | Zbl
[2] J. Cullinan, F. Hajir. Ramification in iterated towers for rational functions. Manuscripta Math. 137 (2012), no. 3-4, 273-286. | DOI | MR | Zbl
[3] M. Daub, J. Lang, M. Merling, A. Pacelli, N. Pitiwan, M. Rosen. Function Fields with Class Number Indivisible by a Prime . Acta Arith. 150 (2011), no. 4, 339-359. | DOI | MR | Zbl
[4] R. Jones, J. Rouse. Iterated endomorphisms of abelian algebraic groups. Proc. Lond. Math. Soc. 100 (2010), no. 3, 763-794. | DOI | MR | Zbl
[5] Y. Kishi. A family of cyclic cubic polynomials whose roots are systems of fundamental units. J. Number Theory 102 (2003), no. 1, 90-106. | DOI | Zbl
[6] T. Komatsu. Arithmetic of Rikuna’s generic cyclic polynomial and generalization of Kummer theory. Manuscripta Math. 114 (2004) 265-279. | DOI | MR | Zbl
[7] S. Lang, Algebra, Graduate Texts in Mathematics 211. Springer-Verlag, New York, 2002. | DOI
[8] E. Lehmer. Connection between Gaussian periods and cyclic units. Math. Comp. 50 (1988), no. 182, 535-541. | DOI | MR | Zbl
[9] J. Neukirch, Algebraic Number Theory, Springer-Verlag, Berlin, 1999. | DOI | Zbl
[10] R.W.K. Odoni. The Galois theory of iterates and composites of polynomials. Proc. London. Math. Soc. 51 (1985), no. 3, 385-414. | DOI | MR | Zbl
[11] Y. Rikuna. On simple families of cyclic polynomials. Proc. Amer. Math. Soc. 130 (2002), no. 8, 2215-2218 | DOI | Zbl
[12] R. Schoof, L. Washington. Quintic polynomials and real cyclotomic fields with large class numbers. Math. Comp. 50 (1988), no. 182, 543-556. | DOI | MR | Zbl
[13] D. Shanks. The simplest cubic fields. Math. Comp. 28 (1974), 1137-1157 | DOI | MR | Zbl
[14] Y.Y. Shen, L.C. Washington. A family of real -tic fields. Trans. Amer. Math. Soc. 345 (1994), no. 1, 413-434. | DOI | Zbl
[15] Y.Y. Shen, L.C. Washington. A family of real -tic fields. Canad. J. Math. 47 (1995), no. 3, 655-672. | DOI | Zbl
[16] J. Silverman, The arithmetic of dynamical systems. Graduate Texts in Mathematics, 241. Springer, New York, 2007. | DOI | Zbl
Cited by Sources: