The existence and construction of vector-valued modular forms (vvmf) for any arbitrary Fuchsian group , for any representation of finite image can be established by lifting scalar-valued modular forms of the finite index subgroup of . In this article vvmf are explicitly constructed for any admissible multiplier (representation) , see Section 3 for the definition of admissible multiplier. In other words, the following question has been partially answered: For which representations of a given , is there a vvmf with at least one nonzero component?
L’existence et construction de formes modulaires vectorielles (vvmf) pour un groupe Fuchsien arbitraire et pour une représentation d’image finie peut être établie en relevant des formes modulaires scalaires pour le sous-groupe d’indice fini de . Dans cet article, des vvmf sont explicitement construites pour tout multiplicateur admissible (représentation) (voir paragraphe 3 pour la définition du multiplicateur admissible). En d’autres termes, on a partiellement répondu à la question suivante : Pour quelles représentations d’un groupe donné, existe-t-il une vvmf avec au moins une composante non nulle ?
Published online:
Keywords: Fuchsian group, Vector-valued modular form, Induced representation
Jitendra Bajpai 1
@article{PMB_2019___1_5_0, author = {Jitendra Bajpai}, title = {Lifting of {Modular} {Forms}}, journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres}, pages = {5--20}, publisher = {Presses universitaires de Franche-Comt\'e}, number = {1}, year = {2019}, doi = {10.5802/pmb.27}, language = {en}, url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.27/} }
TY - JOUR AU - Jitendra Bajpai TI - Lifting of Modular Forms JO - Publications mathématiques de Besançon. Algèbre et théorie des nombres PY - 2019 SP - 5 EP - 20 IS - 1 PB - Presses universitaires de Franche-Comté UR - https://pmb.centre-mersenne.org/articles/10.5802/pmb.27/ DO - 10.5802/pmb.27 LA - en ID - PMB_2019___1_5_0 ER -
%0 Journal Article %A Jitendra Bajpai %T Lifting of Modular Forms %J Publications mathématiques de Besançon. Algèbre et théorie des nombres %D 2019 %P 5-20 %N 1 %I Presses universitaires de Franche-Comté %U https://pmb.centre-mersenne.org/articles/10.5802/pmb.27/ %R 10.5802/pmb.27 %G en %F PMB_2019___1_5_0
Jitendra Bajpai. Lifting of Modular Forms. Publications mathématiques de Besançon. Algèbre et théorie des nombres, no. 1 (2019), pp. 5-20. doi : 10.5802/pmb.27. https://pmb.centre-mersenne.org/articles/10.5802/pmb.27/
[1] Modular functions and Dirichlet series in number theory, Graduate Texts in Mathematics, 41, Springer, 1976, x+198 pages | MR | Zbl
[2] Modular forms on noncongruence subgroups, Combinatorics (Univ. California, 1968) (Proceedings of Symposia in Pure Mathematics), Volume XIX, American Mathematical Society, 1971, pp. 1-25 | Zbl
[3] On Vector Valued Automorphic Forms (2015) (Ph. D. Thesis)
[4] Vector-valued modular functions for the modular group and the hypergeometric equation, Commun. Number Theory Phys., Volume 1 (2007) no. 4, pp. 651-680 | MR | Zbl
[5] The geometry of discrete groups, Graduate Texts in Mathematics, 91, Springer, 1995, xii+337 pages (Corrected reprint of the 1983 original) | MR
[6] Borcherds products on O(2, ) and Chern classes of Heegner divisors, Lecture Notes in Mathematics, 1780, Springer, 2002, viii+152 pages | DOI | MR
[7] On the converse theorem for Borcherds products, J. Algebra, Volume 397 (2014), pp. 315-342 | DOI | MR
[8] Vector-valued modular forms and the modular orbifold of elliptic curves, Int. J. Number Theory, Volume 13 (2017) no. 1, pp. 39-63 | DOI | MR
[9] The A-D-E classification of minimal and conformal invariant theories, Commun. Math. Phys., Volume 113 (1987) no. 1, pp. 1-26 | MR | Zbl
[10] Cusp forms like , Can. Math. Bull., Volume 52 (2009) no. 1, pp. 53-62 | DOI | Zbl
[11] The theory of Jacobi forms, Progress in Mathematics, 55, Birkhäuser, 1985, v+148 pages | MR
[12] Fourier coefficients of vector-valued modular forms of dimension 2, Can. Math. Bull., Volume 57 (2014) no. 3, pp. 485-494 | DOI | MR
[13] Three-dimensional imprimitive representations of the modular group and their associated modular forms, J. Number Theory, Volume 160 (2016), pp. 186-214 | DOI | MR
[14] The theory of vector-valued modular forms for the modular group, Conformal field theory, automorphic forms and related topics (Contributions in Mathematical and Computational Sciences), Volume 8, Springer, 2014, pp. 247-286 | MR
[15] Fuchsian groups, Chicago Lectures in Mathematics, University of Chicago Press, 1992, x+175 pages | MR
[16] Modular functions in analytic number theory, Markham Publishing Co., 1970, x+150 pages | MR | Zbl
[17] On vector-valued modular forms and their Fourier coefficients, Acta Arith., Volume 110 (2003) no. 2, pp. 117-124
[18] Vector-valued modular forms and Poincaré series, Ill. J. Math., Volume 48 (2004) no. 4, pp. 1345-1366 | MR
[19] On modular forms for some noncongruence subgroups of , J. Number Theory, Volume 128 (2008) no. 7, pp. 1989-2009 | DOI
[20] On modular forms for some noncongruence subgroups of . II, Bull. Lond. Math. Soc., Volume 41 (2009) no. 4, pp. 589-598 | DOI | MR
[21] Fourier coefficients of noncongruence cuspforms, Bull. Lond. Math. Soc., Volume 44 (2012) no. 3, pp. 591-598 | DOI | MR
[22] Irreducible vector-valued modular forms of dimension less than six, Ill. J. Math., Volume 55 (2011) no. 4, pp. 1267-1297 | MR | Zbl
[23] Structure of the module of vector-valued modular forms, J. Lond. Math. Soc., Volume 82 (2010) no. 1, pp. 32-48 | DOI | MR
[24] On the Fourier coefficients of 2-dimensional vector-valued modular forms, Proc. Am. Math. Soc., Volume 140 (2012) no. 6, pp. 1921-1930 | DOI
[25] On the classification of rational conformal field theories, Phys. Lett. B, Volume 213 (1988) no. 3, pp. 303-308 | DOI | MR
[26] Modular forms and functions, Cambridge University Press, 1977, xiii+384 pages | MR
[27] Vector-valued automorphic forms and vector bundles (2014) (https://arxiv.org/abs/1312.2992v3)
[28] Modular forms on noncongruence subgroups, Séminaire de Théorie des Nombres, Paris 1985–86 (Progress in Mathematics), Volume 71, Birkhäuser, 1987, pp. 199-206
[29] On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., Vol. VIII, American Mathematical Society, 1965, pp. 1-15 | MR
[30] Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, 11, Iwanami Shoten, 1971, xiv+267 pages | Zbl
[31] Spectral theory of automorphic functions and its applications, Mathematics and its Applications (Soviet Series), 51, Kluwer Academic Publishers, 1990, xiv+176 pages (Translated from the Russian by N. B. Lebedinskaya) | MR | Zbl
[32] On quasi-modular forms, almost holomorphic modular forms, and the vector-valued modular forms of Shimura, Ramanujan J., Volume 37 (2015) no. 1, pp. 165-180 | DOI | MR
[33] Mock theta functions (2002) (Ph. D. Thesis) | Zbl
Cited by Sources: