Let be an imaginary quadratic field and its ring of integers. Let be a non-zero ideal and let be a rational inert prime in and coprime with . Let be an irreducible finite dimensional representation of . We establish that a system of Hecke eigenvalues appearing in the cohomology with coefficients in already lives in the cohomology with coefficients in for some ; except possibly in some few cases.
Soient un corps quadratique imaginaire et son anneau d’entiers. Soient un idéal non nul et un nombre premier inerte dans copremier avec . Soit une représentation irréductible de dimension finie de . Nous établissons qu’un système de valeurs propres de Hecke appartenant au groupe de cohomologie â ?¡ coefficients dans appartient aussi au groupe de cohomologie â ?¡ coefficients dans pour à l’exception, éventuellement, de quelques cas.
Published online:
DOI: 10.5802/pmb.4
Keywords: Modular forms modulo $p$, imaginary quadratic fields, Hecke operators, Serre weight
Adam Mohamed 1
@article{PMB_2014___1_45_0, author = {Adam Mohamed}, title = {Weight reduction for cohomological mod $p$ modular forms over imaginary quadratic fields}, journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres}, pages = {45--71}, publisher = {Presses universitaires de Franche-Comt\'e}, number = {1}, year = {2014}, doi = {10.5802/pmb.4}, mrnumber = {3362630}, zbl = {1353.11081}, language = {en}, url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.4/} }
TY - JOUR AU - Adam Mohamed TI - Weight reduction for cohomological mod $p$ modular forms over imaginary quadratic fields JO - Publications mathématiques de Besançon. Algèbre et théorie des nombres PY - 2014 SP - 45 EP - 71 IS - 1 PB - Presses universitaires de Franche-Comté UR - https://pmb.centre-mersenne.org/articles/10.5802/pmb.4/ DO - 10.5802/pmb.4 LA - en ID - PMB_2014___1_45_0 ER -
%0 Journal Article %A Adam Mohamed %T Weight reduction for cohomological mod $p$ modular forms over imaginary quadratic fields %J Publications mathématiques de Besançon. Algèbre et théorie des nombres %D 2014 %P 45-71 %N 1 %I Presses universitaires de Franche-Comté %U https://pmb.centre-mersenne.org/articles/10.5802/pmb.4/ %R 10.5802/pmb.4 %G en %F PMB_2014___1_45_0
Adam Mohamed. Weight reduction for cohomological mod $p$ modular forms over imaginary quadratic fields. Publications mathématiques de Besançon. Algèbre et théorie des nombres, no. 1 (2014), pp. 45-71. doi : 10.5802/pmb.4. https://pmb.centre-mersenne.org/articles/10.5802/pmb.4/
[1] A. Mohamed, Some explicit aspects of modular forms over imaginary quadratic fields, PhD Thesis, Universität Duisburg Essen, Campus Essen, June 2011, available from .
[2] A. Ash and G. Stevens, Modular forms in characteristic l and special values of their L-function, Duke Math. J 53, no 3 849-868. | DOI | Zbl
[3] A. Ash and G. Stevens, Cohomology of arithmetic groups and congruences between systems of Hecke eigenvalues, J. Reine Angew. Math. 365 (1986), 192–220. | DOI | MR | Zbl
[4] A. Ash, D. Doud, and D. Pollack, Galois representations with conjectural connections to arithmetic cohomology, Duke Mathematical Journal, Vol. 112, No. 3, 2002. | DOI | MR | Zbl
[5] A. Ash and W. Sinnott, An analogue of Serre’s conjecture for Galois representations and Hecke eigenclasses in the mod-p cohomology of , Duke Math. J. 105 (2000), 1-24. | DOI | Zbl
[6] J. S. Bygott, Modular forms and modular symbols over imaginary quadratic fields, PhD thesis, University of Exeter, 1998.
[7] K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics, Springer-Verlag New-York, 1982. | DOI | Zbl
[8] F. Diamond, A correspondence between representations of local Galois groups and Lie-type groups, Proceedings of the LMS Durham Symposium on L-functions and Galois Representations, 2004. | DOI
[9] B. Edixhoven, C. Khare, Hasse invariant and group cohomology, Documenta Math 8 (2003) 43-50. | Zbl
[10] M. Emerton, -Adic families of modular forms, Séminaire Bourbaki, 62ème anneé, 2009-2010, No. 1013, (2009).
[11] L. M. Figueiredo, Serre’s conjecture for imaginary quadratic fields, Compositio Mathematica. 118 (1999), No. 1, 103-122. | DOI | Zbl
[12] M. H. Sengün and S. Türkelli, Weight Reduction for mod l Bianchi Modular forms, Journal of Number Theory, Volume 129, Issue 8, August 2009, Pages 2010-2019. | DOI | Zbl
[13] R. Taylor, On congruences between modular forms, PhD Thesis, Princeton University 1988.
[14] G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Mathematical Journals, Vol.45, №. 3, (1978), 637-679. | DOI | MR | Zbl
[15] E. Urban, Formes automorphes cuspidales pour sur un corps quadratique imaginaire. Valeurs spéciales de fonctions L et congruences, Compositio Mathematica, tome 99, No. 3 ( 1995), 283-324. | Zbl
[16] G. Wiese, On the faithfulness of parabolic cohomology as a Hecke module over a finite field, J. Reine Angew. Math. ( 2007), 79-103. | DOI | MR | Zbl
Cited by Sources: