Introduction to Mono-anabelian Geometry
Publications mathématiques de Besançon. Algèbre et théorie des nombres (2021), pp. 5-44.

The present article is based on the four hours mini-courses “Introduction to Mono-anabelian Geometry” which the author gave at the conference “Fundamental Groups in Arithmetic Geometry” (Paris, 2016). The purpose of the present article is to introduce mono-anabelian geometry by focusing on mono-anabelian geometry for mixed-characteristic local fields, which provides elementary but nontrivial examples of typical arguments in the study of mono-anabelian geometry.

Cet article est basé sur les 4 heures de mini-cours « Introduction to Mono-anabelian Geometry » que l’auteur a données lors de la conférence « Fundamental Groups in Arithmetic Geometry » (Paris, 2016). L’objectif est de présenter la géométrie mono-anabélienne en se concentrant sur les corps locaux de caractéristique mixte ce qui permet de fournir des exemples élémentaires mais non-triviaux du type d’arguments présents dans l’étude de géométrie mono-anabélienne.

Received:
Published online:
DOI: 10.5802/pmb.42
Classification: 11S20
Keywords: mono-anabelian geometry, MLF, mono-anabelian reconstruction algorithm, MLF-pair, cyclotomic synchronization, Kummer poly-isomorphism, mono-anabelian transport

Yuichiro Hoshi 1

1 Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, JAPAN
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{PMB_2021____5_0,
     author = {Yuichiro Hoshi},
     title = {Introduction to {Mono-anabelian} {Geometry}},
     journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres},
     pages = {5--44},
     publisher = {Presses universitaires de Franche-Comt\'e},
     year = {2021},
     doi = {10.5802/pmb.42},
     language = {en},
     url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.42/}
}
TY  - JOUR
AU  - Yuichiro Hoshi
TI  - Introduction to Mono-anabelian Geometry
JO  - Publications mathématiques de Besançon. Algèbre et théorie des nombres
PY  - 2021
SP  - 5
EP  - 44
PB  - Presses universitaires de Franche-Comté
UR  - https://pmb.centre-mersenne.org/articles/10.5802/pmb.42/
DO  - 10.5802/pmb.42
LA  - en
ID  - PMB_2021____5_0
ER  - 
%0 Journal Article
%A Yuichiro Hoshi
%T Introduction to Mono-anabelian Geometry
%J Publications mathématiques de Besançon. Algèbre et théorie des nombres
%D 2021
%P 5-44
%I Presses universitaires de Franche-Comté
%U https://pmb.centre-mersenne.org/articles/10.5802/pmb.42/
%R 10.5802/pmb.42
%G en
%F PMB_2021____5_0
Yuichiro Hoshi. Introduction to Mono-anabelian Geometry. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2021), pp. 5-44. doi : 10.5802/pmb.42. https://pmb.centre-mersenne.org/articles/10.5802/pmb.42/

[1] Yuichiro Hoshi A note on the geometricity of open homomorphisms between the absolute Galois groups of p-adic local fields, Kodai Math. J., Volume 36 (2013) no. 2, pp. 284-298 | MR | Zbl

[2] Yuichiro Hoshi Mono-anabelian reconstruction of number fields, RIMS Kôkyûroku Bessatsu, Volume B76 (2019), pp. 1-77 | Zbl

[3] Moshe Jarden; Jürgen Ritter On the characterization of local fields by their absolute Galois groups, J. Number Theory, Volume 11 (1979) no. 1, pp. 1-13 | DOI | MR | Zbl

[4] Shinichi Mochizuki A version of the Grothendieck conjecture for p-adic local fields, Int. J. Math., Volume 8 (1997) no. 4, pp. 499-506 | DOI | MR | Zbl

[5] Shinichi Mochizuki Topics in absolute anabelian geometry I: generalities, J. Math. Sci., Tokyo, Volume 19 (2012) no. 2, pp. 139-242 | MR | Zbl

[6] Shinichi Mochizuki Topics in absolute anabelian geometry III: global reconstruction algorithms, J. Math. Sci., Tokyo, Volume 22 (2015) no. 4, pp. 939-1156 | MR | Zbl

[7] Shinichi Mochizuki The mathematics of mutually alien copies: from Gaussian integrals to inter-universal Teichmüller theory, RIMS Kôkyûroku Bessatsu, Volume B84 (2021), pp. 23-192 | Zbl

[8] Jürgen Neukirch Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, 322, Springer, 1992 | Zbl

[9] Jürgen Neukirch; Alexander Schmidt; Kay Wingberg Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften, 323, Springer, 2008 | DOI | Zbl

[10] Nikolay Nikolov; Dan Segal Finite index subgroups in profinite groups, C. R. Math. Acad. Sci. Paris, Volume 337 (2003) no. 5, pp. 303-308 | DOI | MR | Zbl

[11] Jean-Pierre Serre Local class field theory, Algebraic Number Theory, Academic Press Inc., 1965, pp. 128-161

[12] John T. Tate p-divisible groups, Proc. Conf. Local Fields (Driebergen, 1966), Springer, 1967, pp. 158-183 | DOI | Zbl

[13] Shuji Yamagata A counterexample for the local analogy of a theorem by Iwasawa and Uchida, Proc. Japan Acad., Volume 52 (1976) no. 6, pp. 276-278 | MR | Zbl

Cited by Sources: