In the early 2000s, Ralph Greenberg asked whether the Iwasawa Main Conjecture could be proven in a Hida family of nearly-ordinary -adic eigencuspforms by propagating it from a known case through congruences. Emerton-Pollack-Weston showed that this is indeed possible when the -invariant of such a family is trivial. In this article, we show that this is the case without this assumption, and that in fact such a result holds in general over the universal deformation ring of an irreducible residual modular Galois representation.
Au début des années 2000, Ralph Greenberg a demandé si l’on pouvait démontrer la Conjecture Principale de la théorie d’Iwasawa pour une famille de Hida de formes modulaires paraboliques propres quasi-ordinaires en la propageant par congruences à partir d’un cas connu. Emerton-Pollack-Weston ont montré que c’était effectivement possible lorsque l’invariant de cette famille est trivial. Dans cet article, nous montrons que c’est le cas sans hypothèse supplémentaire, et que ce résultat demeure en fait vrai sur l’anneau de déformation universelle d’une représentation résiduelle modulaire irréductible.
Revised:
Published online:
Olivier Fouquet 1
@article{PMB_2024____23_0, author = {Olivier Fouquet}, title = {Congruences and the {Iwasawa} {Main} {Conjecture} for modular forms}, journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres}, pages = {23--42}, publisher = {Presses universitaires de Franche-Comt\'e}, year = {2024}, doi = {10.5802/pmb.54}, language = {en}, url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.54/} }
TY - JOUR AU - Olivier Fouquet TI - Congruences and the Iwasawa Main Conjecture for modular forms JO - Publications mathématiques de Besançon. Algèbre et théorie des nombres PY - 2024 SP - 23 EP - 42 PB - Presses universitaires de Franche-Comté UR - https://pmb.centre-mersenne.org/articles/10.5802/pmb.54/ DO - 10.5802/pmb.54 LA - en ID - PMB_2024____23_0 ER -
%0 Journal Article %A Olivier Fouquet %T Congruences and the Iwasawa Main Conjecture for modular forms %J Publications mathématiques de Besançon. Algèbre et théorie des nombres %D 2024 %P 23-42 %I Presses universitaires de Franche-Comté %U https://pmb.centre-mersenne.org/articles/10.5802/pmb.54/ %R 10.5802/pmb.54 %G en %F PMB_2024____23_0
Olivier Fouquet. Congruences and the Iwasawa Main Conjecture for modular forms. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2024), pp. 23-42. doi : 10.5802/pmb.54. https://pmb.centre-mersenne.org/articles/10.5802/pmb.54/
[1] -functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I (Progress in Mathematics), Volume 86, Birkhäuser, 1990, pp. 333-400 | MR | Zbl
[2] Demuškin groups with group actions and applications to deformations of Galois representations, Compos. Math., Volume 121 (2000) no. 2, pp. 109-154 | DOI | Zbl
[3] On the density of modular points in universal deformation spaces, Am. J. Math., Volume 123 (2001) no. 5, pp. 985-1007 | DOI | MR | Zbl
[4] Motivic -functions and Galois module structures, Math. Ann., Volume 305 (1996), pp. 65-102 | DOI | MR | Zbl
[5] La conjecture de Birch et Swinnerton-Dyer -adique, Bourbaki seminar. Volume 2002/2003 (Astérisque), Volume 294, Société Mathématique de France, 2004, pp. 251-319 | Numdam
[6] Représentations de et -modules, -adic representations of -adic groups II: Representations of et -modules. (Astérisque), Volume 330, Société Mathématique de France, 2010, pp. 281-509 | Numdam | Zbl
[7] Valeurs de fonctions et périodes d’intégrales, Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (Proceedings of Symposia in Pure Mathematics), Volume 33, American Mathematical Society, 1979, pp. 313-346 (with an appendix by N. Koblitz and A. Ogus) | Zbl
[8] On deformation rings and Hecke rings, Ann. Math., Volume 144 (1996) no. 1, pp. 137-166 | DOI | MR | Zbl
[9] The Tamagawa number conjecture of adjoint motives of modular forms, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 5, pp. 663-727 | DOI | Numdam | MR | Zbl
[10] The weight in Serre’s conjectures on modular forms, Invent. Math., Volume 109 (1992) no. 3, pp. 563-594 | DOI | MR | Zbl
[11] Variation of Iwasawa invariants in Hida families, Invent. Math., Volume 163 (2006) no. 3, pp. 523-580 | DOI | MR | Zbl
[12] Valeurs spéciales des fonctions des motifs, Séminaire Bourbaki, Vol. 1991/92 (Astérisque), Volume 206, Société Mathématique de France, 1992, pp. 205-249 (Exp. No. 751, 4) | Numdam | Zbl
[13] -adic properties of motivic fundamental lines, J. Éc. Polytech., Math., Volume 4 (2017), pp. 37-86 | DOI | Numdam | MR | Zbl
[14] Control theorems for Selmer groups of nearly ordinary deformations, J. Reine Angew. Math., Volume 666 (2012), pp. 163-187 | MR | Zbl
[15] Deformation rings and Hecke algebras in the totally real case (1999) (preprint, 99 pages)
[16] Galois theory for the Selmer group of an abelian variety, Compos. Math., Volume 136 (2003) no. 3, pp. 255-297 | DOI | MR | Zbl
[17] On the Iwasawa invariants of elliptic curves, Invent. Math., Volume 142 (2000) no. 1, pp. 17-63 | DOI | MR | Zbl
[18] Iwasawa theory and -adic Hodge theory, Kodai Math. J., Volume 16 (1993) no. 1, pp. 1-31 | MR | Zbl
[19] Lectures on the approach to Iwasawa theory for Hasse-Weil -functions via . I, Arithmetic algebraic geometry (Trento, 1991) (Lecture Notes in Mathematics), Volume 1553, Springer, 1993, pp. 50-163 | DOI | MR | Zbl
[20] Euler systems, Iwasawa theory, and Selmer groups, Kodai Math. J., Volume 22 (1999) no. 3, pp. 313-372 | MR | Zbl
[21] -adic Hodge theory and values of zeta functions of modular forms, Cohomologies -adiques et applications arithmétiques. III (Astérisque), Volume 295, Société Mathématique de France, 2004, pp. 117-290 | Numdam | Zbl
[22] Iwasawa theory for elliptic curves at supersingular primes, Invent. Math., Volume 152 (2003) no. 1, pp. 1-36 | DOI | MR | Zbl
[23] Rational points of abelian varieties with values in towers of number fields, Invent. Math., Volume 18 (1972), pp. 183-266 | DOI | MR | Zbl
[24] Arithmetic of Weil curves, Invent. Math., Volume 25 (1974), pp. 1-61 | DOI | MR | Zbl
[25] Zeta morphisms for rank two universal deformations (2020) (preprint)
[26] Selmer Complexes (Astérisque), Volume 310, Société Mathématique de France, 2006, p. 559 | Numdam | Zbl
[27] On the two-variable Iwasawa main conjecture, Compos. Math., Volume 142 (2006) no. 5, pp. 1157-1200 | DOI | MR | Zbl
[28] The image of Colmez’s Montreal functor, Publ. Math., Inst. Hautes Étud. Sci., Volume 118 (2013), pp. 1-191 | DOI | Numdam | MR | Zbl
[29] On the -adic -function of a modular form at a supersingular prime, Duke Math. J., Volume 118 (2003) no. 3, pp. 523-558 | MR | Zbl
[30] On a variation of Mazur’s deformation functor, Compos. Math., Volume 87 (1993) no. 3, pp. 269-286 | Numdam | MR | Zbl
[31] Nonvanishing of -functions for , Invent. Math., Volume 97 (1989) no. 2, pp. 381-403 | DOI | MR | Zbl
[32] Motives for modular forms, Invent. Math., Volume 100 (1990) no. 2, pp. 419-430 | DOI | MR | Zbl
[33] Sur les représentations modulaires de degré de , Duke Math. J., Volume 54 (1987) no. 1, pp. 179-230 | Zbl
[34] Nearly ordinary deformations of irreducible residual representations, Ann. Fac. Sci. Toulouse, Math., Volume 10 (2001) no. 1, pp. 185-215 | DOI | Numdam | MR | Zbl
[35] Iwasawa theory for elliptic curves at supersingular primes: a pair of main conjectures, J. Number Theory, Volume 132 (2012) no. 7, pp. 1483-1506 | DOI | MR | Zbl
[36] Ring-theoretic properties of certain Hecke algebras, Ann. Math., Volume 141 (1995) no. 3, pp. 553-572 | DOI | MR | Zbl
[37] From the Birch and Swinnerton-Dyer Conjecture to non-commutative Iwasa theory via the Equivariant Tamagawa Number Conjecture-a survey, -functions and Galois representations (Durham, July 2004) (London Mathematical Society Lecture Note Series), Volume 320, Cambridge University Press, 2004, pp. 333-380 | MR | Zbl
[38] Modular elliptic curves and Fermat’s last theorem, Ann. Math., Volume 141 (1995) no. 3, pp. 443-551 | DOI | MR | Zbl
Cited by Sources: