Congruences and the Iwasawa Main Conjecture for modular forms
Publications mathématiques de Besançon. Algèbre et théorie des nombres (2024), pp. 23-42.

Au début des années 2000, Ralph Greenberg a demandé si l’on pouvait démontrer la Conjecture Principale de la théorie d’Iwasawa pour une famille de Hida de formes modulaires paraboliques propres quasi-ordinaires en la propageant par congruences à partir d’un cas connu. Emerton-Pollack-Weston ont montré que c’était effectivement possible lorsque l’invariant μ de cette famille est trivial. Dans cet article, nous montrons que c’est le cas sans hypothèse supplémentaire, et que ce résultat demeure en fait vrai sur l’anneau de déformation universelle d’une représentation résiduelle modulaire irréductible.

In the early 2000s, Ralph Greenberg asked whether the Iwasawa Main Conjecture could be proven in a Hida family of nearly-ordinary p-adic eigencuspforms by propagating it from a known case through congruences. Emerton-Pollack-Weston showed that this is indeed possible when the μ-invariant of such a family is trivial. In this article, we show that this is the case without this assumption, and that in fact such a result holds in general over the universal deformation ring of an irreducible residual modular Galois representation.

Reçu le :
Révisé le :
Publié le :
DOI : 10.5802/pmb.54
Olivier Fouquet 1

1 Laboratoire de mathématiques de Besançon, 16, route de Gray 25000 Besançon, France
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{PMB_2024____23_0,
     author = {Olivier Fouquet},
     title = {Congruences and the {Iwasawa} {Main} {Conjecture} for modular forms},
     journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres},
     pages = {23--42},
     publisher = {Presses universitaires de Franche-Comt\'e},
     year = {2024},
     doi = {10.5802/pmb.54},
     language = {en},
     url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.54/}
}
TY  - JOUR
AU  - Olivier Fouquet
TI  - Congruences and the Iwasawa Main Conjecture for modular forms
JO  - Publications mathématiques de Besançon. Algèbre et théorie des nombres
PY  - 2024
SP  - 23
EP  - 42
PB  - Presses universitaires de Franche-Comté
UR  - https://pmb.centre-mersenne.org/articles/10.5802/pmb.54/
DO  - 10.5802/pmb.54
LA  - en
ID  - PMB_2024____23_0
ER  - 
%0 Journal Article
%A Olivier Fouquet
%T Congruences and the Iwasawa Main Conjecture for modular forms
%J Publications mathématiques de Besançon. Algèbre et théorie des nombres
%D 2024
%P 23-42
%I Presses universitaires de Franche-Comté
%U https://pmb.centre-mersenne.org/articles/10.5802/pmb.54/
%R 10.5802/pmb.54
%G en
%F PMB_2024____23_0
Olivier Fouquet. Congruences and the Iwasawa Main Conjecture for modular forms. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2024), pp. 23-42. doi : 10.5802/pmb.54. https://pmb.centre-mersenne.org/articles/10.5802/pmb.54/

[1] Spencer Bloch; Kazuya Kato L-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I (Progress in Mathematics), Volume 86, Birkhäuser, 1990, pp. 333-400 | MR | Zbl

[2] Gebhard Böckle Demuškin groups with group actions and applications to deformations of Galois representations, Compos. Math., Volume 121 (2000) no. 2, pp. 109-154 | DOI | Zbl

[3] Gebhard Böckle On the density of modular points in universal deformation spaces, Am. J. Math., Volume 123 (2001) no. 5, pp. 985-1007 | DOI | MR | Zbl

[4] David Burns; Matthias Flach Motivic L-functions and Galois module structures, Math. Ann., Volume 305 (1996), pp. 65-102 | DOI | MR | Zbl

[5] Pierre Colmez La conjecture de Birch et Swinnerton-Dyer p-adique, Bourbaki seminar. Volume 2002/2003 (Astérisque), Volume 294, Société Mathématique de France, 2004, pp. 251-319 | Numdam

[6] Pierre Colmez Représentations de GL 2 (Q p ) et (ϕ,Γ)-modules, p-adic representations of p-adic groups II: Representations of GL 2 ( p ) et (ϕ,Γ)-modules. (Astérisque), Volume 330, Société Mathématique de France, 2010, pp. 281-509 | Numdam | Zbl

[7] Pierre Deligne Valeurs de fonctions L et périodes d’intégrales, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (Proceedings of Symposia in Pure Mathematics), Volume 33, American Mathematical Society, 1979, pp. 313-346 (with an appendix by N. Koblitz and A. Ogus) | Zbl

[8] Fred Diamond On deformation rings and Hecke rings, Ann. Math., Volume 144 (1996) no. 1, pp. 137-166 | DOI | MR | Zbl

[9] Fred Diamond; Matthias Flach; Li Guo The Tamagawa number conjecture of adjoint motives of modular forms, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 5, pp. 663-727 | DOI | Numdam | MR | Zbl

[10] Bas Edixhoven The weight in Serre’s conjectures on modular forms, Invent. Math., Volume 109 (1992) no. 3, pp. 563-594 | DOI | MR | Zbl

[11] Matthew Emerton; Robert Pollack; Tom Weston Variation of Iwasawa invariants in Hida families, Invent. Math., Volume 163 (2006) no. 3, pp. 523-580 | DOI | MR | Zbl

[12] Jean-Marc Fontaine Valeurs spéciales des fonctions L des motifs, Séminaire Bourbaki, Vol. 1991/92 (Astérisque), Volume 206, Société Mathématique de France, 1992, pp. 205-249 (Exp. No. 751, 4) | Numdam | Zbl

[13] Olivier Fouquet p-adic properties of motivic fundamental lines, J. Éc. Polytech., Math., Volume 4 (2017), pp. 37-86 | DOI | Numdam | MR | Zbl

[14] Olivier Fouquet; Tadashi Ochiai Control theorems for Selmer groups of nearly ordinary deformations, J. Reine Angew. Math., Volume 666 (2012), pp. 163-187 | MR | Zbl

[15] Kazuhiro Fujiwara Deformation rings and Hecke algebras in the totally real case (1999) (preprint, 99 pages)

[16] Ralph Greenberg Galois theory for the Selmer group of an abelian variety, Compos. Math., Volume 136 (2003) no. 3, pp. 255-297 | DOI | MR | Zbl

[17] Ralph Greenberg; Vinayak Vatsal On the Iwasawa invariants of elliptic curves, Invent. Math., Volume 142 (2000) no. 1, pp. 17-63 | DOI | MR | Zbl

[18] Kazuya Kato Iwasawa theory and p-adic Hodge theory, Kodai Math. J., Volume 16 (1993) no. 1, pp. 1-31 | MR | Zbl

[19] Kazuya Kato Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions via B dR . I, Arithmetic algebraic geometry (Trento, 1991) (Lecture Notes in Mathematics), Volume 1553, Springer, 1993, pp. 50-163 | DOI | MR | Zbl

[20] Kazuya Kato Euler systems, Iwasawa theory, and Selmer groups, Kodai Math. J., Volume 22 (1999) no. 3, pp. 313-372 | MR | Zbl

[21] Kazuya Kato p-adic Hodge theory and values of zeta functions of modular forms, Cohomologies p-adiques et applications arithmétiques. III (Astérisque), Volume 295, Société Mathématique de France, 2004, pp. 117-290 | Numdam | Zbl

[22] Shin-ichi Kobayashi Iwasawa theory for elliptic curves at supersingular primes, Invent. Math., Volume 152 (2003) no. 1, pp. 1-36 | DOI | MR | Zbl

[23] Barry Mazur Rational points of abelian varieties with values in towers of number fields, Invent. Math., Volume 18 (1972), pp. 183-266 | DOI | MR | Zbl

[24] Barry Mazur; Peter Swinnerton-Dyer Arithmetic of Weil curves, Invent. Math., Volume 25 (1974), pp. 1-61 | DOI | MR | Zbl

[25] Kentaro Nakamura Zeta morphisms for rank two universal deformations (2020) (preprint)

[26] Jan Nekovář Selmer Complexes (Astérisque), Volume 310, Société Mathématique de France, 2006, p. 559 | Numdam | Zbl

[27] Tadashi Ochiai On the two-variable Iwasawa main conjecture, Compos. Math., Volume 142 (2006) no. 5, pp. 1157-1200 | DOI | MR | Zbl

[28] Vytautas Paškūnas The image of Colmez’s Montreal functor, Publ. Math., Inst. Hautes Étud. Sci., Volume 118 (2013), pp. 1-191 | DOI | Numdam | MR | Zbl

[29] Robert Pollack On the p-adic L-function of a modular form at a supersingular prime, Duke Math. J., Volume 118 (2003) no. 3, pp. 523-558 | MR | Zbl

[30] Ravi Ramakrishna On a variation of Mazur’s deformation functor, Compos. Math., Volume 87 (1993) no. 3, pp. 269-286 | Numdam | MR | Zbl

[31] David E. Rohrlich Nonvanishing of L-functions for GL (2), Invent. Math., Volume 97 (1989) no. 2, pp. 381-403 | DOI | MR | Zbl

[32] Anthony J. Scholl Motives for modular forms, Invent. Math., Volume 100 (1990) no. 2, pp. 419-430 | DOI | MR | Zbl

[33] Jean-Pierre Serre Sur les représentations modulaires de degré 2 de Gal (Q ¯/Q), Duke Math. J., Volume 54 (1987) no. 1, pp. 179-230 | Zbl

[34] Christopher M. Skinner; Andrew Wiles Nearly ordinary deformations of irreducible residual representations, Ann. Fac. Sci. Toulouse, Math., Volume 10 (2001) no. 1, pp. 185-215 | DOI | Numdam | MR | Zbl

[35] Florian Sprung Iwasawa theory for elliptic curves at supersingular primes: a pair of main conjectures, J. Number Theory, Volume 132 (2012) no. 7, pp. 1483-1506 | DOI | MR | Zbl

[36] Richard Taylor; Andrew Wiles Ring-theoretic properties of certain Hecke algebras, Ann. Math., Volume 141 (1995) no. 3, pp. 553-572 | DOI | MR | Zbl

[37] Otmar Venjakob From the Birch and Swinnerton-Dyer Conjecture to non-commutative Iwasa theory via the Equivariant Tamagawa Number Conjecture-a survey, L-functions and Galois representations (Durham, July 2004) (London Mathematical Society Lecture Note Series), Volume 320, Cambridge University Press, 2004, pp. 333-380 | MR | Zbl

[38] Andrew Wiles Modular elliptic curves and Fermat’s last theorem, Ann. Math., Volume 141 (1995) no. 3, pp. 443-551 | DOI | MR | Zbl

Cité par Sources :