Abelian varieties over 𝔽 2 of prescribed order
Publications mathématiques de Besançon. Algèbre et théorie des nombres (2024), pp. 43-58.

Nous démontrons que pour tout entier positif m, il existe une infinité de variétés abéliennes simples sur 𝔽 2 d’ordre m. La méthode est constructive, se basant sur le travail de Madan–Pal pour le cas m=1 pour produire une suite explicite de polynômes de Weil donnant lieu à des variétés abéliennes sur 𝔽 2 d’ordre m. La suite elle-même dépend du choix d’une représentation binaire généralisée de m; par des choix soigneux de cette représentation, nous nous assurons que les polynômes qui en résultent ont des polygones de Newton 2-adiques garantissant l’existence de facteurs irréductibles convenables.

We prove that for every positive integer m, there exist infinitely many simple abelian varieties over 𝔽 2 of order m. The method is constructive, building on the work of Madan–Pal in the case m=1 to produce an explicit sequence of Weil polynomials giving rise to abelian varieties over 𝔽 2 of order m. This sequence itself depends on the choice of a suitable generalized binary representation of m; by making careful choices of this representation, we can ensure that the resulting sequence of polynomials have 2-adic Newton polygons which guarantee the existence of suitable irreducible factors.

Reçu le :
Révisé le :
Publié le :
DOI : 10.5802/pmb.55
Kiran S. Kedlaya 1

1 Department of Mathematics, University of California San Diego, La Jolla, CA 92093, United States of America
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{PMB_2024____43_0,
     author = {Kiran S. Kedlaya},
     title = {Abelian varieties over $\mathbb{F}_2$ of prescribed order},
     journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres},
     pages = {43--58},
     publisher = {Presses universitaires de Franche-Comt\'e},
     year = {2024},
     doi = {10.5802/pmb.55},
     language = {en},
     url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.55/}
}
TY  - JOUR
AU  - Kiran S. Kedlaya
TI  - Abelian varieties over $\mathbb{F}_2$ of prescribed order
JO  - Publications mathématiques de Besançon. Algèbre et théorie des nombres
PY  - 2024
SP  - 43
EP  - 58
PB  - Presses universitaires de Franche-Comté
UR  - https://pmb.centre-mersenne.org/articles/10.5802/pmb.55/
DO  - 10.5802/pmb.55
LA  - en
ID  - PMB_2024____43_0
ER  - 
%0 Journal Article
%A Kiran S. Kedlaya
%T Abelian varieties over $\mathbb{F}_2$ of prescribed order
%J Publications mathématiques de Besançon. Algèbre et théorie des nombres
%D 2024
%P 43-58
%I Presses universitaires de Franche-Comté
%U https://pmb.centre-mersenne.org/articles/10.5802/pmb.55/
%R 10.5802/pmb.55
%G en
%F PMB_2024____43_0
Kiran S. Kedlaya. Abelian varieties over $\mathbb{F}_2$ of prescribed order. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2024), pp. 43-58. doi : 10.5802/pmb.55. https://pmb.centre-mersenne.org/articles/10.5802/pmb.55/

[1] Raymond van Bommel; Edgar Costa; Wanlin Li; Bjorn Poonen; Alexander Smith Abelian varieties of prescribed order over finite fields (2021) (https://arxiv.org/abs/2106.13651)

[2] Stephen A. DiPippo; Everett W. Howe Real polynomials with all roots on the unit circle and abelian varieties over finite fields, J. Number Theory, Volume 73 (1998) no. 2, pp. 426-450 (corrigendum in [3]) | DOI | MR | Zbl

[3] Stephen A. DiPippo; Everett W. Howe Corrigendum: “Real polynomials with all roots on the unit circle and abelian varieties over finite fields”, J. Number Theory, Volume 83 (2000) no. 1, p. 192 | DOI | MR

[4] Toren D’Nelly-Warady; Kiran S. Kedlaya Geometric decomposition of abelian varieties of order 1 (2022) (https://arxiv.org/abs/2109.03986v2)

[5] Taylor Dupuy; Kiran S. Kedlaya; David Roe; Christelle Vincent Isogeny classes of abelian varieties over finite fields in the LMFDB, Arithmetic Geometry, Number Theory, and Computation (Simons Symposia), Springer, 2022, pp. 375-448 | MR

[6] Everett W. Howe; Kiran S. Kedlaya Every positive integer is the order of an ordinary abelian variety over 𝔽 2 , Res. Number Theory, Volume 7 (2021) no. 4, 59, 6 pages | MR | Zbl

[7] Borys Kadets Estimates for the number of rational points on simple abelian varieties over finite fields, Math. Z., Volume 297 (2021) no. 1-2, pp. 465-473 | DOI | MR | Zbl

[9] Manohar L. Madan; Sat Pal Abelian varieties and a conjecture of R. M. Robinson, J. Reine Angew. Math., Volume 291 (1977), pp. 78-91 | DOI | MR

[10] Manohar L. Madan; Clifford S. Queen Algebraic function fields of class number one, Acta Arith., Volume 20 (1972), pp. 423-432 | DOI | MR | Zbl

[11] Stefano Marseglia; Caleb Springer Every finite abelian group is the group of rational points of an ordinary abelian variety over 𝔽 2 , 𝔽 3 , and 𝔽 5 , Proc. Am. Math. Soc., Volume 151 (2023), pp. 501-510 | DOI | Zbl

[12] Pietro Mercuri; Claudio Stirpe Classification of algebraic function fields with class number one, J. Number Theory, Volume 154 (2015), pp. 365-374 | DOI | MR | Zbl

[13] James S. Milne The Riemann hypothesis over finite fields, from Weil to the present day, The Legacy of Bernhard Riemann after One Hundred and Fifty Years. Vol. II (Advanced Lectures in Mathematics), Volume 35, International Press, 2016, pp. 487-565 | MR | Zbl

[14] George W. Reitwiesner Binary arithmetic, Adv. Comput., Volume 1 (1960), pp. 231-308 | DOI | MR

[15] Raphael M. Robinson Intervals containing infinitely many sets of conjugate algebraic units, Ann. Math., Volume 80 (1964), pp. 411-428 | DOI | MR | Zbl

[16] Raphael M. Robinson Conjugate algebraic units in a special interval, Math. Z., Volume 154 (1977), pp. 31-40 | DOI | MR | Zbl

[17] The Sage Developers SageMath, the Sage Mathematics Software System (Version 9.6), 2022 (http://www.sagemath.org/)

[18] Qibin Shen; Shuhui Shi Function fields of class number one, J. Number Theory, Volume 154 (2015), pp. 375-379 | DOI | MR | Zbl

[19] Claudio Stirpe A counterexample to “Algebraic function fields with small class number”, J. Number Theory, Volume 143 (2014), pp. 402-404 | DOI | MR | Zbl

[20] John Tate Classes d’isogénie des variétés abéliennes sur un corps fini (d’après T. Honda), Séminaire Bourbaki. Vol. 1968/69 (Lecture Notes in Mathematics), Volume 1968, Springer, 1968, pp. 347-363 | MR | Zbl

[21] William C. Waterhouse; James S. Milne Abelian varieties over finite fields, 1969 Number Theory Institute (Proceedings of Symposia in Pure Mathematics), Volume 20, American Mathematical Society, 1971, pp. 53-64 | DOI | Zbl

Cité par Sources :