On the Kernel of the Gysin Homomorphism on Chow Groups of Zero Cycles
Publications mathématiques de Besançon. Algèbre et théorie des nombres (2024), pp. 59-104.

Étant donné une surface lisse projective connexe sur plongée dans un espace projectif d et C une courbe lisse projective plongée dans la surface, on étudie le noyau de l’homomorphisme de Gysin entre les groupes de Chow des 0-cycles de degré zéro de la courbe et de la surface induit par l’injection fermée. Suivant l’approche de Bannerjee and Guletskii, on démontre que le noyau de l’homomorphisme de Gysin est une union dénombrable de translatées d’une sous-variété abélienne A dans la Jacobienne J de la courbe C. On démontre également qu’il existe un sous-ensemble c-ouvert U 0 de l’ensemble U( d ) * paramétrisant les courbes lisses projectives tel que A=0 ou A=B pour toute courbe paramétrisée par U 0 , où B est la sous-variété abélienne de J correspondant à la cohomologie évanescente H 1 (C,) van de C.

On donne une introduction aux cycles algébriques, aux groupes de Chow, aux structures de Hodge, à l’application d’Abel–Jacobi, aux pinceaux de Lefschetz et à l’irréductibilité de la représentation de monodromie.

Given a smooth projective connected surface over embedded into a projective space d and a smooth projective curve C embedded into the surface we study the kernel of the Gysin homomorphism between the Chow groups of 0-cycles of degree zero of the curve and the surface induced by the closed embedding. Following the approach of Bannerjee and Guletskii we prove that the kernel of the Gysin homomorphism is a countable union of translates of an abelian subvariety A inside the Jacobian J of the curve C. We also prove that there is a c-open subset U 0 contained in the set U( d ) * parametrizing the smooth projective curves such that A=0 or A=B for all curves parametrized by U 0 , where B is the abelian subvariety of J corresponding to the vanishing cohomology H 1 (C,) van of C.

We give a background of algebraic cycles, Chow groups, Hodge structures, the Abel–Jacobi map, Lefschetz pencils and the irreducibility of the monodromy representation.

Reçu le :
Révisé le :
Publié le :
DOI : 10.5802/pmb.56
Mots clés : $0$-cycles, rational, algebraic and homological equivalence, Chow groups, Hodge theory, Lefschetz pencils, the monodromy argument, Gysin homomorphism
Rina Paucar 1 ; Claudia Schoemann 2

1 Instituto de Matemática y Ciencias Afines (IMCA), Universidad Nacional de Ingenería (UNI), Lima, Perú
2 Laboratoire GAATI, Université de la Polynésie française, 98702 Faa’a, Polynésie française
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{PMB_2024____59_0,
     author = {Rina Paucar and Claudia Schoemann},
     title = {On the {Kernel} of the {Gysin} {Homomorphism} on {Chow} {Groups} of {Zero} {Cycles}},
     journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres},
     pages = {59--104},
     publisher = {Presses universitaires de Franche-Comt\'e},
     year = {2024},
     doi = {10.5802/pmb.56},
     language = {en},
     url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.56/}
}
TY  - JOUR
AU  - Rina Paucar
AU  - Claudia Schoemann
TI  - On the Kernel of the Gysin Homomorphism on Chow Groups of Zero Cycles
JO  - Publications mathématiques de Besançon. Algèbre et théorie des nombres
PY  - 2024
SP  - 59
EP  - 104
PB  - Presses universitaires de Franche-Comté
UR  - https://pmb.centre-mersenne.org/articles/10.5802/pmb.56/
DO  - 10.5802/pmb.56
LA  - en
ID  - PMB_2024____59_0
ER  - 
%0 Journal Article
%A Rina Paucar
%A Claudia Schoemann
%T On the Kernel of the Gysin Homomorphism on Chow Groups of Zero Cycles
%J Publications mathématiques de Besançon. Algèbre et théorie des nombres
%D 2024
%P 59-104
%I Presses universitaires de Franche-Comté
%U https://pmb.centre-mersenne.org/articles/10.5802/pmb.56/
%R 10.5802/pmb.56
%G en
%F PMB_2024____59_0
Rina Paucar; Claudia Schoemann. On the Kernel of the Gysin Homomorphism on Chow Groups of Zero Cycles. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2024), pp. 59-104. doi : 10.5802/pmb.56. https://pmb.centre-mersenne.org/articles/10.5802/pmb.56/

[1] Kalyan Banerjee; Vladimir Guletskiĭ Etale monodromy and rational equivalence for 1-cycles on cubic hypersurfaces in 5 , Mat. Sb., Volume 211 (2020) no. 2, pp. 3-45 | DOI | MR | Zbl

[2] Spencer Bloch K 2 of Artinian Q-algebras, with application to algebraic cycles, Commun. Algebra, Volume 3 (1975), pp. 405-428 | DOI | MR | Zbl

[3] Spencer Bloch An example in the theory of algebraic cycles, Algebraic K-theory (Lecture Notes in Mathematics), Volume 551, Springer, 1976, pp. 1-29 | MR | Zbl

[4] Spencer Bloch Lectures on algebraic cycles, New Mathematical Monographs, 16, Cambridge University Press, 2010, xxiv+130 pages | DOI | MR

[5] Spencer Bloch; Arnold Kas; David Lieberman Zero cycles on surfaces with p g =0, Compos. Math., Volume 33 (1976) no. 2, pp. 135-145 | MR | Zbl

[6] David Eisenbud; Joe Harris 3264 & All That Intersection Theory in Algebraic Geometry, 2013

[7] William Fulton Intersection theory, Princeton University Press, 2016

[8] William Fulton; Johan Hansen A connectedness theorem for projective varieties, with applications to intersections and singularities of mappings, Ann. Math., Volume 110 (1979) no. 1, pp. 159-166 | DOI | MR | Zbl

[9] Joe Harris Algebraic geometry: a first course, 133, Springer, 2013

[10] Robin Hartshorne Equivalence relations on algebraic cycles and subvarieties of small codimension, Algebraic geometry, Arcata 1974 (Proceedings of Symposia in Pure Mathematics), Volume 29, American Mathematical Society, 1975, pp. 129-164 | DOI | MR | Zbl

[11] Robin Hartshorne Algebraic geometry, 52, Springer, 2013

[12] Steven Kleiman Algebraic cycles and the Weil conjectures, Advanced Studies in Pure Mathematics, 3, North-Holland, 1968, pp. 359-386 | MR

[13] Klaus Lamotke The topology of complex projective varieties after S. Lefschetz, Topology, Volume 20 (1981), pp. 15-51 | DOI | MR | Zbl

[14] James Milne Abelian Varieties (v2.00), 2008, p. vi+166 (available at www.jmilne.org/math/)

[15] James Milne Lectures on Etale Cohomology (v2.21), 2013, p. 202 (available at www.jmilne.org/math/)

[16] David Mumford Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto Univ., Volume 9 (1969) no. 2, pp. 195-204 | MR | Zbl

[17] Jacob Murre Un résultat en théorie des cycles algébriques de codimension deux, C. R. Math. Acad. Sci. Paris, Volume 296 (1983) no. 23, pp. 981-984 | MR | Zbl

[18] Jacob Murre; Jan Nagel; Chris Peters Lectures on the theory of pure motives, University Lecture Series, 61, American Mathematical Society, 2013, x+149 pages | DOI | MR

[19] Chris Peters; Joseph Steenbrink Mixed hodge structures, 52, Springer, 2008

[20] A. A. Roĭtman Rational equivalence of zero-dimensional cycles, Mat. Sb., N. Ser., Volume 89(131) (1972), p. 569-585, 671 | MR

[21] Evgueni Tevelev Projective Duality and Homogeneous Spaces: Invariant Theory and Algebraic Transformation Groups, Encyclopaedia of Mathematical Sciences, 133, Springer, 2005

[22] Claire Voisin Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics, 76, Cambridge University Press, 2002, x+322 pages (translated from the French original by Leila Schneps) | DOI | MR

[23] Claire Voisin Hodge theory and complex algebraic geometry. II, Cambridge Studies in Advanced Mathematics, 77, Cambridge University Press, 2003, x+351 pages (translated from the French by Leila Schneps) | DOI | MR

Cité par Sources :