Given a smooth projective connected surface over embedded into a projective space and a smooth projective curve embedded into the surface we study the kernel of the Gysin homomorphism between the Chow groups of 0-cycles of degree zero of the curve and the surface induced by the closed embedding. Following the approach of Bannerjee and Guletskii we prove that the kernel of the Gysin homomorphism is a countable union of translates of an abelian subvariety inside the Jacobian of the curve . We also prove that there is a -open subset contained in the set parametrizing the smooth projective curves such that or for all curves parametrized by , where is the abelian subvariety of corresponding to the vanishing cohomology of .
We give a background of algebraic cycles, Chow groups, Hodge structures, the Abel–Jacobi map, Lefschetz pencils and the irreducibility of the monodromy representation.
Étant donné une surface lisse projective connexe sur plongée dans un espace projectif et une courbe lisse projective plongée dans la surface, on étudie le noyau de l’homomorphisme de Gysin entre les groupes de Chow des 0-cycles de degré zéro de la courbe et de la surface induit par l’injection fermée. Suivant l’approche de Bannerjee and Guletskii, on démontre que le noyau de l’homomorphisme de Gysin est une union dénombrable de translatées d’une sous-variété abélienne dans la Jacobienne de la courbe . On démontre également qu’il existe un sous-ensemble c-ouvert de l’ensemble paramétrisant les courbes lisses projectives tel que ou pour toute courbe paramétrisée par , où est la sous-variété abélienne de correspondant à la cohomologie évanescente de .
On donne une introduction aux cycles algébriques, aux groupes de Chow, aux structures de Hodge, à l’application d’Abel–Jacobi, aux pinceaux de Lefschetz et à l’irréductibilité de la représentation de monodromie.
Revised:
Published online:
Rina Paucar 1; Claudia Schoemann 2
@article{PMB_2024____59_0, author = {Rina Paucar and Claudia Schoemann}, title = {On the {Kernel} of the {Gysin} {Homomorphism} on {Chow} {Groups} of {Zero} {Cycles}}, journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres}, pages = {59--104}, publisher = {Presses universitaires de Franche-Comt\'e}, year = {2024}, doi = {10.5802/pmb.56}, language = {en}, url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.56/} }
TY - JOUR AU - Rina Paucar AU - Claudia Schoemann TI - On the Kernel of the Gysin Homomorphism on Chow Groups of Zero Cycles JO - Publications mathématiques de Besançon. Algèbre et théorie des nombres PY - 2024 SP - 59 EP - 104 PB - Presses universitaires de Franche-Comté UR - https://pmb.centre-mersenne.org/articles/10.5802/pmb.56/ DO - 10.5802/pmb.56 LA - en ID - PMB_2024____59_0 ER -
%0 Journal Article %A Rina Paucar %A Claudia Schoemann %T On the Kernel of the Gysin Homomorphism on Chow Groups of Zero Cycles %J Publications mathématiques de Besançon. Algèbre et théorie des nombres %D 2024 %P 59-104 %I Presses universitaires de Franche-Comté %U https://pmb.centre-mersenne.org/articles/10.5802/pmb.56/ %R 10.5802/pmb.56 %G en %F PMB_2024____59_0
Rina Paucar; Claudia Schoemann. On the Kernel of the Gysin Homomorphism on Chow Groups of Zero Cycles. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2024), pp. 59-104. doi : 10.5802/pmb.56. https://pmb.centre-mersenne.org/articles/10.5802/pmb.56/
[1] Etale monodromy and rational equivalence for 1-cycles on cubic hypersurfaces in , Mat. Sb., Volume 211 (2020) no. 2, pp. 3-45 | DOI | MR | Zbl
[2] of Artinian -algebras, with application to algebraic cycles, Commun. Algebra, Volume 3 (1975), pp. 405-428 | DOI | MR | Zbl
[3] An example in the theory of algebraic cycles, Algebraic -theory (Lecture Notes in Mathematics), Volume 551, Springer, 1976, pp. 1-29 | MR | Zbl
[4] Lectures on algebraic cycles, New Mathematical Monographs, 16, Cambridge University Press, 2010, xxiv+130 pages | DOI | MR
[5] Zero cycles on surfaces with , Compos. Math., Volume 33 (1976) no. 2, pp. 135-145 | MR | Zbl
[6] 3264 & All That Intersection Theory in Algebraic Geometry, 2013
[7] Intersection theory, Princeton University Press, 2016
[8] A connectedness theorem for projective varieties, with applications to intersections and singularities of mappings, Ann. Math., Volume 110 (1979) no. 1, pp. 159-166 | DOI | MR | Zbl
[9] Algebraic geometry: a first course, 133, Springer, 2013
[10] Equivalence relations on algebraic cycles and subvarieties of small codimension, Algebraic geometry, Arcata 1974 (Proceedings of Symposia in Pure Mathematics), Volume 29, American Mathematical Society, 1975, pp. 129-164 | DOI | MR | Zbl
[11] Algebraic geometry, 52, Springer, 2013
[12] Algebraic cycles and the Weil conjectures, Advanced Studies in Pure Mathematics, 3, North-Holland, 1968, pp. 359-386 | MR
[13] The topology of complex projective varieties after S. Lefschetz, Topology, Volume 20 (1981), pp. 15-51 | DOI | MR | Zbl
[14] Abelian Varieties (v2.00), 2008, p. vi+166 (available at www.jmilne.org/math/)
[15] Lectures on Etale Cohomology (v2.21), 2013, p. 202 (available at www.jmilne.org/math/)
[16] Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto Univ., Volume 9 (1969) no. 2, pp. 195-204 | MR | Zbl
[17] Un résultat en théorie des cycles algébriques de codimension deux, C. R. Math. Acad. Sci. Paris, Volume 296 (1983) no. 23, pp. 981-984 | MR | Zbl
[18] Lectures on the theory of pure motives, University Lecture Series, 61, American Mathematical Society, 2013, x+149 pages | DOI | MR
[19] Mixed hodge structures, 52, Springer, 2008
[20] Rational equivalence of zero-dimensional cycles, Mat. Sb., N. Ser., Volume 89(131) (1972), p. 569-585, 671 | MR
[21] Projective Duality and Homogeneous Spaces: Invariant Theory and Algebraic Transformation Groups, Encyclopaedia of Mathematical Sciences, 133, Springer, 2005
[22] Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics, 76, Cambridge University Press, 2002, x+322 pages (translated from the French original by Leila Schneps) | DOI | MR
[23] Hodge theory and complex algebraic geometry. II, Cambridge Studies in Advanced Mathematics, 77, Cambridge University Press, 2003, x+351 pages (translated from the French by Leila Schneps) | DOI | MR
Cited by Sources: