The abcd conjecture, uniform boundedness, and dynamical systems
Publications mathématiques de Besançon. Algèbre et théorie des nombres (2024), pp. 119-134.

We survey Vojta’s higher-dimensional generalizations of the abc conjecture and Szpiro’s conjecture as well as recent developments that apply them to various problems in arithmetic dynamics. In particular, the “abcd conjecture” implies a dynamical analogue of a conjecture on the uniform boundedness of torsion points and a dynamical analogue of Lang’s conjecture on lower bounds for canonical heights.

Nous décrivons des généralisations en dimension supérieure dues à Vojta de la conjecture abc et de la conjecture de Szpiro, ainsi que des avancées récentes qui les utilisent dans des problèmes variés de dynamique arithmétique. En particulier, la « conjecture abcd » implique un analogue dynamique de la conjecture de torsion et un analogue dynamique de la conjecture de Lang sur les minorations de hauteurs canoniques.

Received:
Revised:
Published online:
DOI: 10.5802/pmb.58

Robin Zhang 1, 2

1 Department of Mathematics, Columbia University, USA
2 Department of Mathematics, Massachusetts Institute of Technology, USA
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{PMB_2024____119_0,
     author = {Robin Zhang},
     title = {The $abcd$ conjecture, uniform boundedness, and dynamical systems},
     journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres},
     pages = {119--134},
     publisher = {Presses universitaires de Franche-Comt\'e},
     year = {2024},
     doi = {10.5802/pmb.58},
     language = {en},
     url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.58/}
}
TY  - JOUR
AU  - Robin Zhang
TI  - The $abcd$ conjecture, uniform boundedness, and dynamical systems
JO  - Publications mathématiques de Besançon. Algèbre et théorie des nombres
PY  - 2024
SP  - 119
EP  - 134
PB  - Presses universitaires de Franche-Comté
UR  - https://pmb.centre-mersenne.org/articles/10.5802/pmb.58/
DO  - 10.5802/pmb.58
LA  - en
ID  - PMB_2024____119_0
ER  - 
%0 Journal Article
%A Robin Zhang
%T The $abcd$ conjecture, uniform boundedness, and dynamical systems
%J Publications mathématiques de Besançon. Algèbre et théorie des nombres
%D 2024
%P 119-134
%I Presses universitaires de Franche-Comté
%U https://pmb.centre-mersenne.org/articles/10.5802/pmb.58/
%R 10.5802/pmb.58
%G en
%F PMB_2024____119_0
Robin Zhang. The $abcd$ conjecture, uniform boundedness, and dynamical systems. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2024), pp. 119-134. doi : 10.5802/pmb.58. https://pmb.centre-mersenne.org/articles/10.5802/pmb.58/

[1] Alan Baker Experiments on the abc-conjecture, Publ. Math. Debr., Volume 65 (2004) no. 3-4, pp. 253-260 | DOI | MR | Zbl

[2] Matthew Baker; Robert Rumely Potential theory and dynamics on the Berkovich projective line, Mathematical Surveys and Monographs, 159, American Mathematical Society, 2010, xxxiv+428 pages | DOI | MR

[3] Jerzy Browkin; Juliusz Brzeziński Some remarks on the abc-conjecture, Math. Comput., Volume 62 (1994) no. 206, pp. 931-939 | DOI | MR

[4] Anna Cadoret; Akio Tamagawa Uniform boundedness of p-primary torsion of abelian schemes, Invent. Math., Volume 188 (2012) no. 1, pp. 83-125 | DOI | MR | Zbl

[5] Anna Cadoret; Akio Tamagawa Note on torsion conjecture, Geometric and differential Galois theories (Séminaires et Congrès), Volume 27, Société Mathématique de France, 2013, pp. 57-68 | MR

[6] Anna Cadoret; Akio Tamagawa A uniform open image theorem for -adic representations, II, Duke Math. J., Volume 162 (2013) no. 12, pp. 2301-2344 | DOI | MR | Zbl

[7] Jung Kyu Canci Rational periodic points for quadratic maps, Ann. Inst. Fourier, Volume 60 (2010) no. 3, pp. 953-985 | DOI | Numdam | MR | Zbl

[8] Jung Kyu Canci; Laura Paladino Preperiodic points for rational functions defined over a global field in terms of good reduction, Proc. Am. Math. Soc., Volume 144 (2016) no. 12, pp. 5141-5158 | DOI | MR | Zbl

[9] Davide Castelvecchi Mathematical proof that rocked number theory will be published, Nature, Volume 580 (2020) no. 177

[10] Claude Chevalley Introduction to the Theory of Algebraic Functions of One Variable, Mathematical Surveys, 6, American Mathematical Society, 1951, xi+188 pages | DOI | MR

[11] Kwok Chi Chim; Tarlok Nath Shorey; Sneh Bala Sinha On Baker’s explicit abc-conjecture, Publ. Math. Debr., Volume 94 (2019) no. 3-4, pp. 435-453 | DOI | MR | Zbl

[12] Pete L. Clark; Xavier Xarles Local bounds for torsion points on abelian varieties, Can. J. Math., Volume 60 (2008) no. 3, pp. 532-555 | DOI | MR | Zbl

[13] Taylor Dupuy; Anton Hilado The Statement of Mochizuki’s Corollary 3.12, Initial Theta Data, and the First Two Indeterminacies (2020) | arXiv

[14] Noam D. Elkies ABC implies Mordell, Int. Math. Res. Not. (1991) no. 7, pp. 99-109 | DOI | MR | Zbl

[15] Renée Elkik; Dorian Goldfeld; Mireille Martin-Deschamps; Christian Peskine; Thomas Tucker; Shou-Wu Zhang Lucien Szpiro (1941–2020), Notices Am. Math. Soc., Volume 68 (2021) no. 10, pp. 1763-1777 | DOI | MR | Zbl

[16] Najmuddin Fakhruddin Questions on self maps of algebraic varieties, J. Ramanujan Math. Soc., Volume 18 (2003) no. 2, pp. 109-122 | MR | Zbl

[17] Éric Gaudron; Gaël Rémond Torsion des variétés abéliennes CM, Proc. Am. Math. Soc., Volume 146 (2018) no. 7, pp. 2741-2747 | DOI | MR | Zbl

[18] Dorian Goldfeld Beyond the Last Theorem, Math Horizons, Volume 4 (1996) no. 1, pp. 26-34 | DOI

[19] Dorian Goldfeld Modular forms, elliptic curves and the ABC-conjecture, A panorama of number theory or the view from Baker’s garden (Zürich, 1999), Cambridge University Press, 2002, pp. 128-147 | DOI | MR | Zbl

[20] The Princeton companion to mathematics (Timothy Gowers; June Barrow-Green; Imre Leader, eds.), Princeton University Press, 2008, xxii+1034 pages | MR

[21] Andrew Granville Rational and integral points on quadratic twists of a given hyperelliptic curve, Int. Math. Res. Not. (2007) no. 8, 027, 24 pages | DOI | MR

[22] Andrew Granville; Harold M. Stark abc implies no “Siegel zeros” for L-functions of characters with negative discriminant, Invent. Math., Volume 139 (2000) no. 10, pp. 1224-1231 | MR

[23] Andrew Granville; Thomas J. Tucker It’s as easy as abc, Notices Am. Math. Soc., Volume 49 (2002) no. 10, pp. 1224-1231 | MR | Zbl

[24] Marc Hindry; Joseph H. Silverman The canonical height and integral points on elliptic curves, Invent. Math., Volume 93 (1988) no. 2, pp. 419-450 | DOI | MR | Zbl

[25] Marc Hindry; Joseph H. Silverman Sur le nombre de points de torsion rationnels sur une courbe elliptique, C. R. Math. Acad. Sci. Paris, Volume 329 (1999) no. 2, pp. 97-100 | DOI | MR | Zbl

[26] Marc Hindry; Joseph H. Silverman Diophantine geometry. An introduction, Graduate Texts in Mathematics, 201, Springer, 2000, xiv+558 pages | DOI | MR

[27] Patrick Ingram Lower bounds on the canonical height associated to the morphism ϕ(z)=z d +c, Monatsh. Math., Volume 157 (2009) no. 1, pp. 69-89 | DOI | MR | Zbl

[28] Patrick Ingram The critical height is a moduli height, Duke Math. J., Volume 167 (2018) no. 7, pp. 1311-1346 | DOI | MR | Zbl

[29] Sheldon Kamienny Torsion points on elliptic curves and q-coefficients of modular forms, Invent. Math., Volume 109 (1992) no. 2, pp. 221-229 | DOI | MR | Zbl

[30] Sheldon Kamienny; Barry Mazur Rational torsion of prime order in elliptic curves over number fields, Columbia University number theory seminar, New York, 1992 (Astérisque), Volume 228, Société Mathématique de France, 1995, pp. 81-100 (with an appendix by A. Granville) | Numdam | MR

[31] Minhyong Kim; Dinesh S. Thakur; José Felipe Voloch Diophantine approximation and deformation, Bull. Soc. Math. Fr., Volume 128 (2000) no. 4, pp. 585-598 | Numdam | MR | Zbl

[32] Erica Klarreich Titans of Mathematics Clash Over Epic Proof of ABC Conjecture, Quanta Magazine (2018) (https://www.quantamagazine.org/titans-of-mathematics-clash-over-epic-proof-of-abc-conjecture-20180920/)

[33] Shanta Laishram; Tarlok Nath Shorey Baker’s explicit abc-conjecture and applications, Acta Arith., Volume 155 (2012) no. 4, pp. 419-429 | DOI | MR | Zbl

[34] Serge Lang Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften, 231, Springer, 1978, xi+261 pages | DOI | MR

[35] Serge Lang Introduction to algebraic and abelian functions, Graduate Texts in Mathematics, 89, Springer, 1982, ix+169 pages | DOI | MR

[36] Robert Lazarsfeld Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 48, Springer, 2004, xviii+387 pages | DOI | MR

[37] Nicole R. Looper A lower bound on the canonical height for polynomials, Math. Ann., Volume 373 (2019) no. 3-4, pp. 1057-1074 | DOI | MR | Zbl

[38] Nicole R. Looper Dynamical uniform boundedness and the abc-conjecture, Invent. Math., Volume 225 (2021) no. 1, pp. 1-44 | DOI | MR | Zbl

[39] Nicole R. Looper The Uniform Boundedness and Dynamical Lang Conjectures for polynomials (2021) | arXiv

[40] David W. Masser On abc and discriminants, Proc. Am. Math. Soc., Volume 130 (2002) no. 11, pp. 3141-3150 | DOI | MR | Zbl

[41] Barry Mazur Modular curves and the Eisenstein ideal, Publ. Math., Inst. Hautes Étud. Sci. (1977) no. 47, pp. 33-186 (with an appendix by Mazur and M. Rapoport) | DOI | Numdam | MR | Zbl

[42] Barry Mazur Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math., Volume 44 (1978) no. 2, pp. 129-162 | DOI | MR | Zbl

[43] Loïc Merel Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math., Volume 124 (1996) no. 1-3, pp. 437-449 | DOI | MR | Zbl

[44] Shinichi Mochizuki Inter-universal Teichmüller theory I: Construction of Hodge theaters, Publ. Res. Inst. Math. Sci., Volume 57 (2021) no. 1, pp. 3-207 | DOI | MR | Zbl

[45] Shinichi Mochizuki Inter-universal Teichmüller theory II: Hodge-Arakelov-theoretic evaluation, Publ. Res. Inst. Math. Sci., Volume 57 (2021) no. 1, pp. 209-401 | DOI | MR | Zbl

[46] Shinichi Mochizuki Inter-universal Teichmüller theory III: Canonical splittings of the log-theta-lattice, Publ. Res. Inst. Math. Sci., Volume 57 (2021) no. 1, pp. 403-626 | DOI | MR | Zbl

[47] Shinichi Mochizuki Inter-universal Teichmüller theory IV: Log-volume computations and set-theoretic foundations, Publ. Res. Inst. Math. Sci., Volume 57 (2021) no. 1, pp. 627-723 | DOI | MR | Zbl

[48] Shinichi Mochizuki On the essential logical structure of inter-universal Teichmüller theory in terms of logical and “”/logical or “” relations: report on the occasion of the publication of the four main papers on inter-universal Teichmüller theory, https://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1968.pdf, 2022

[49] Shinichi Mochizuki; Ivan Fesenko; Yuichiro Hoshi; Arata Minamide; Wojciech Porowski Explicit estimates in inter-universal Teichmüller theory, Kodai Math. J., Volume 45 (2022) no. 2, pp. 175-236 | Zbl

[50] Patrick Morton; Joseph H. Silverman Rational periodic points of rational functions, Int. Math. Res. Not. (1994) no. 2, pp. 97-110 | DOI | MR | Zbl

[51] Douglas G. Northcott Periodic points on an algebraic variety, Ann. Math., Volume 51 (1950), pp. 167-177 | DOI | MR | Zbl

[52] Joseph Oesterlé Nouvelles approches du “théorème” de Fermat, Séminaire Bourbaki, Vol. 1987/88 (Astérisque), Société Mathématique de France, 1988 no. 161-162 (Exp. No. 694, 22 pages) | Numdam | MR | Zbl

[53] Chatchawan Panraksa Rational Periodic Points of x d +c andabc-Conjecture, Unpublished note, 2021

[54] Chatchawan Panraksa Rational periodic points of x d +c and Fermat-Catalan equations, Int. J. Number Theory, Volume 18 (2022) no. 5, pp. 1111-1129 | DOI | MR | Zbl

[55] Pierre Parent Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres, J. Reine Angew. Math., Volume 506 (1999), pp. 85-116 | DOI | MR | Zbl

[56] Coen Remaekers The abc-conjecture and the n-conjecture, Bachelor’s thesis, Eindhoven University of Technology, 2009

[57] Norbert Schappacher; René Schoof Beppo Levi and the arithmetic of elliptic curves, Math. Intell., Volume 18 (1996) no. 1, pp. 57-69 | DOI | MR | Zbl

[58] Peter Scholze; Jakob Stix Why abc is still a conjecture, https://www.math.uni-bonn.de/people/scholze/WhyABCisStillaConjecture.pdf, 2018

[59] Alice Silverberg Torsion points on abelian varieties of CM-type, Compos. Math., Volume 68 (1988) no. 3, pp. 241-249 | Numdam | MR | Zbl

[60] Joseph H. Silverman Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994, xiv+525 pages | DOI | MR

[61] Joseph H. Silverman The arithmetic of dynamical systems, Graduate Texts in Mathematics, 241, Springer, 2007, x+511 pages | DOI | MR

[62] The Stacks Project Authors Stacks Project, 2021 (http://stacks.math.columbia.edu)

[63] Henning Stichtenoth Algebraic function fields and codes, Graduate Texts in Mathematics, 254, Springer, 2009, xiv+355 pages | DOI | MR

[64] John Tate Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Lecture Notes in Mathematics), Volume 476 (1975), pp. 33-52 | MR | Zbl

[65] Paul Vojta Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, 1239, Springer, 1987, x+132 pages | DOI | MR

[66] Paul Vojta A more general abc conjecture, Int. Math. Res. Not. (1998) no. 21, pp. 1103-1116 | DOI | MR | Zbl

[67] José Felipe Voloch Commitment schemes and diophantine equations, ANTS XIV—Proceedings of the Fourteenth Algorithmic Number Theory Symposium (The Open Book Series), Volume 4, Mathematical Sciences Publishers (2020), pp. 1-5 | DOI | MR | Zbl

[68] Michel Waldschmidt Lecture on the abc conjecture and some of its consequences, Mathematics in the 21st century (Springer Proceedings in Mathematics & Statistics), Volume 98, Springer, 2015, pp. 211-230 | DOI | MR | Zbl

[69] Robin Zhang A Galois-dynamics correspondence for unicritical polynomials, Arnold Math. J., Volume 7 (2021) no. 3, pp. 467-481 | DOI | MR | Zbl

Cited by Sources: