We survey Vojta’s higher-dimensional generalizations of the conjecture and Szpiro’s conjecture as well as recent developments that apply them to various problems in arithmetic dynamics. In particular, the “ conjecture” implies a dynamical analogue of a conjecture on the uniform boundedness of torsion points and a dynamical analogue of Lang’s conjecture on lower bounds for canonical heights.
Nous décrivons des généralisations en dimension supérieure dues à Vojta de la conjecture et de la conjecture de Szpiro, ainsi que des avancées récentes qui les utilisent dans des problèmes variés de dynamique arithmétique. En particulier, la « conjecture » implique un analogue dynamique de la conjecture de torsion et un analogue dynamique de la conjecture de Lang sur les minorations de hauteurs canoniques.
Revised:
Published online:
Robin Zhang 1, 2
@article{PMB_2024____119_0, author = {Robin Zhang}, title = {The $abcd$ conjecture, uniform boundedness, and dynamical systems}, journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres}, pages = {119--134}, publisher = {Presses universitaires de Franche-Comt\'e}, year = {2024}, doi = {10.5802/pmb.58}, language = {en}, url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.58/} }
TY - JOUR AU - Robin Zhang TI - The $abcd$ conjecture, uniform boundedness, and dynamical systems JO - Publications mathématiques de Besançon. Algèbre et théorie des nombres PY - 2024 SP - 119 EP - 134 PB - Presses universitaires de Franche-Comté UR - https://pmb.centre-mersenne.org/articles/10.5802/pmb.58/ DO - 10.5802/pmb.58 LA - en ID - PMB_2024____119_0 ER -
%0 Journal Article %A Robin Zhang %T The $abcd$ conjecture, uniform boundedness, and dynamical systems %J Publications mathématiques de Besançon. Algèbre et théorie des nombres %D 2024 %P 119-134 %I Presses universitaires de Franche-Comté %U https://pmb.centre-mersenne.org/articles/10.5802/pmb.58/ %R 10.5802/pmb.58 %G en %F PMB_2024____119_0
Robin Zhang. The $abcd$ conjecture, uniform boundedness, and dynamical systems. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2024), pp. 119-134. doi : 10.5802/pmb.58. https://pmb.centre-mersenne.org/articles/10.5802/pmb.58/
[1] Experiments on the -conjecture, Publ. Math. Debr., Volume 65 (2004) no. 3-4, pp. 253-260 | DOI | MR | Zbl
[2] Potential theory and dynamics on the Berkovich projective line, Mathematical Surveys and Monographs, 159, American Mathematical Society, 2010, xxxiv+428 pages | DOI | MR
[3] Some remarks on the -conjecture, Math. Comput., Volume 62 (1994) no. 206, pp. 931-939 | DOI | MR
[4] Uniform boundedness of -primary torsion of abelian schemes, Invent. Math., Volume 188 (2012) no. 1, pp. 83-125 | DOI | MR | Zbl
[5] Note on torsion conjecture, Geometric and differential Galois theories (Séminaires et Congrès), Volume 27, Société Mathématique de France, 2013, pp. 57-68 | MR
[6] A uniform open image theorem for -adic representations, II, Duke Math. J., Volume 162 (2013) no. 12, pp. 2301-2344 | DOI | MR | Zbl
[7] Rational periodic points for quadratic maps, Ann. Inst. Fourier, Volume 60 (2010) no. 3, pp. 953-985 | DOI | Numdam | MR | Zbl
[8] Preperiodic points for rational functions defined over a global field in terms of good reduction, Proc. Am. Math. Soc., Volume 144 (2016) no. 12, pp. 5141-5158 | DOI | MR | Zbl
[9] Mathematical proof that rocked number theory will be published, Nature, Volume 580 (2020) no. 177
[10] Introduction to the Theory of Algebraic Functions of One Variable, Mathematical Surveys, 6, American Mathematical Society, 1951, xi+188 pages | DOI | MR
[11] On Baker’s explicit -conjecture, Publ. Math. Debr., Volume 94 (2019) no. 3-4, pp. 435-453 | DOI | MR | Zbl
[12] Local bounds for torsion points on abelian varieties, Can. J. Math., Volume 60 (2008) no. 3, pp. 532-555 | DOI | MR | Zbl
[13] The Statement of Mochizuki’s Corollary 3.12, Initial Theta Data, and the First Two Indeterminacies (2020) | arXiv
[14] implies Mordell, Int. Math. Res. Not. (1991) no. 7, pp. 99-109 | DOI | MR | Zbl
[15] Lucien Szpiro (1941–2020), Notices Am. Math. Soc., Volume 68 (2021) no. 10, pp. 1763-1777 | DOI | MR | Zbl
[16] Questions on self maps of algebraic varieties, J. Ramanujan Math. Soc., Volume 18 (2003) no. 2, pp. 109-122 | MR | Zbl
[17] Torsion des variétés abéliennes CM, Proc. Am. Math. Soc., Volume 146 (2018) no. 7, pp. 2741-2747 | DOI | MR | Zbl
[18] Beyond the Last Theorem, Math Horizons, Volume 4 (1996) no. 1, pp. 26-34 | DOI
[19] Modular forms, elliptic curves and the -conjecture, A panorama of number theory or the view from Baker’s garden (Zürich, 1999), Cambridge University Press, 2002, pp. 128-147 | DOI | MR | Zbl
[20] The Princeton companion to mathematics (Timothy Gowers; June Barrow-Green; Imre Leader, eds.), Princeton University Press, 2008, xxii+1034 pages | MR
[21] Rational and integral points on quadratic twists of a given hyperelliptic curve, Int. Math. Res. Not. (2007) no. 8, 027, 24 pages | DOI | MR
[22] implies no “Siegel zeros” for -functions of characters with negative discriminant, Invent. Math., Volume 139 (2000) no. 10, pp. 1224-1231 | MR
[23] It’s as easy as , Notices Am. Math. Soc., Volume 49 (2002) no. 10, pp. 1224-1231 | MR | Zbl
[24] The canonical height and integral points on elliptic curves, Invent. Math., Volume 93 (1988) no. 2, pp. 419-450 | DOI | MR | Zbl
[25] Sur le nombre de points de torsion rationnels sur une courbe elliptique, C. R. Math. Acad. Sci. Paris, Volume 329 (1999) no. 2, pp. 97-100 | DOI | MR | Zbl
[26] Diophantine geometry. An introduction, Graduate Texts in Mathematics, 201, Springer, 2000, xiv+558 pages | DOI | MR
[27] Lower bounds on the canonical height associated to the morphism , Monatsh. Math., Volume 157 (2009) no. 1, pp. 69-89 | DOI | MR | Zbl
[28] The critical height is a moduli height, Duke Math. J., Volume 167 (2018) no. 7, pp. 1311-1346 | DOI | MR | Zbl
[29] Torsion points on elliptic curves and -coefficients of modular forms, Invent. Math., Volume 109 (1992) no. 2, pp. 221-229 | DOI | MR | Zbl
[30] Rational torsion of prime order in elliptic curves over number fields, Columbia University number theory seminar, New York, 1992 (Astérisque), Volume 228, Société Mathématique de France, 1995, pp. 81-100 (with an appendix by A. Granville) | Numdam | MR
[31] Diophantine approximation and deformation, Bull. Soc. Math. Fr., Volume 128 (2000) no. 4, pp. 585-598 | Numdam | MR | Zbl
[32] Titans of Mathematics Clash Over Epic Proof of ABC Conjecture, Quanta Magazine (2018) (https://www.quantamagazine.org/titans-of-mathematics-clash-over-epic-proof-of-abc-conjecture-20180920/)
[33] Baker’s explicit -conjecture and applications, Acta Arith., Volume 155 (2012) no. 4, pp. 419-429 | DOI | MR | Zbl
[34] Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften, 231, Springer, 1978, xi+261 pages | DOI | MR
[35] Introduction to algebraic and abelian functions, Graduate Texts in Mathematics, 89, Springer, 1982, ix+169 pages | DOI | MR
[36] Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 48, Springer, 2004, xviii+387 pages | DOI | MR
[37] A lower bound on the canonical height for polynomials, Math. Ann., Volume 373 (2019) no. 3-4, pp. 1057-1074 | DOI | MR | Zbl
[38] Dynamical uniform boundedness and the -conjecture, Invent. Math., Volume 225 (2021) no. 1, pp. 1-44 | DOI | MR | Zbl
[39] The Uniform Boundedness and Dynamical Lang Conjectures for polynomials (2021) | arXiv
[40] On and discriminants, Proc. Am. Math. Soc., Volume 130 (2002) no. 11, pp. 3141-3150 | DOI | MR | Zbl
[41] Modular curves and the Eisenstein ideal, Publ. Math., Inst. Hautes Étud. Sci. (1977) no. 47, pp. 33-186 (with an appendix by Mazur and M. Rapoport) | DOI | Numdam | MR | Zbl
[42] Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math., Volume 44 (1978) no. 2, pp. 129-162 | DOI | MR | Zbl
[43] Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math., Volume 124 (1996) no. 1-3, pp. 437-449 | DOI | MR | Zbl
[44] Inter-universal Teichmüller theory I: Construction of Hodge theaters, Publ. Res. Inst. Math. Sci., Volume 57 (2021) no. 1, pp. 3-207 | DOI | MR | Zbl
[45] Inter-universal Teichmüller theory II: Hodge-Arakelov-theoretic evaluation, Publ. Res. Inst. Math. Sci., Volume 57 (2021) no. 1, pp. 209-401 | DOI | MR | Zbl
[46] Inter-universal Teichmüller theory III: Canonical splittings of the log-theta-lattice, Publ. Res. Inst. Math. Sci., Volume 57 (2021) no. 1, pp. 403-626 | DOI | MR | Zbl
[47] Inter-universal Teichmüller theory IV: Log-volume computations and set-theoretic foundations, Publ. Res. Inst. Math. Sci., Volume 57 (2021) no. 1, pp. 627-723 | DOI | MR | Zbl
[48] On the essential logical structure of inter-universal Teichmüller theory in terms of logical and “”/logical or “” relations: report on the occasion of the publication of the four main papers on inter-universal Teichmüller theory, https://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1968.pdf, 2022
[49] Explicit estimates in inter-universal Teichmüller theory, Kodai Math. J., Volume 45 (2022) no. 2, pp. 175-236 | Zbl
[50] Rational periodic points of rational functions, Int. Math. Res. Not. (1994) no. 2, pp. 97-110 | DOI | MR | Zbl
[51] Periodic points on an algebraic variety, Ann. Math., Volume 51 (1950), pp. 167-177 | DOI | MR | Zbl
[52] Nouvelles approches du “théorème” de Fermat, Séminaire Bourbaki, Vol. 1987/88 (Astérisque), Société Mathématique de France, 1988 no. 161-162 (Exp. No. 694, 22 pages) | Numdam | MR | Zbl
[53] Rational Periodic Points of and-Conjecture, Unpublished note, 2021
[54] Rational periodic points of and Fermat-Catalan equations, Int. J. Number Theory, Volume 18 (2022) no. 5, pp. 1111-1129 | DOI | MR | Zbl
[55] Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres, J. Reine Angew. Math., Volume 506 (1999), pp. 85-116 | DOI | MR | Zbl
[56] The abc-conjecture and the n-conjecture, Bachelor’s thesis, Eindhoven University of Technology, 2009
[57] Beppo Levi and the arithmetic of elliptic curves, Math. Intell., Volume 18 (1996) no. 1, pp. 57-69 | DOI | MR | Zbl
[58] Why is still a conjecture, https://www.math.uni-bonn.de/people/scholze/WhyABCisStillaConjecture.pdf, 2018
[59] Torsion points on abelian varieties of CM-type, Compos. Math., Volume 68 (1988) no. 3, pp. 241-249 | Numdam | MR | Zbl
[60] Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994, xiv+525 pages | DOI | MR
[61] The arithmetic of dynamical systems, Graduate Texts in Mathematics, 241, Springer, 2007, x+511 pages | DOI | MR
[62] Stacks Project, 2021 (http://stacks.math.columbia.edu)
[63] Algebraic function fields and codes, Graduate Texts in Mathematics, 254, Springer, 2009, xiv+355 pages | DOI | MR
[64] Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Lecture Notes in Mathematics), Volume 476 (1975), pp. 33-52 | MR | Zbl
[65] Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, 1239, Springer, 1987, x+132 pages | DOI | MR
[66] A more general conjecture, Int. Math. Res. Not. (1998) no. 21, pp. 1103-1116 | DOI | MR | Zbl
[67] Commitment schemes and diophantine equations, ANTS XIV—Proceedings of the Fourteenth Algorithmic Number Theory Symposium (The Open Book Series), Volume 4, Mathematical Sciences Publishers (2020), pp. 1-5 | DOI | MR | Zbl
[68] Lecture on the conjecture and some of its consequences, Mathematics in the 21st century (Springer Proceedings in Mathematics & Statistics), Volume 98, Springer, 2015, pp. 211-230 | DOI | MR | Zbl
[69] A Galois-dynamics correspondence for unicritical polynomials, Arnold Math. J., Volume 7 (2021) no. 3, pp. 467-481 | DOI | MR | Zbl
Cited by Sources: