Let be an algebraic unit for which the rank of the group of units of the order is equal to . Assume that is not a complex root of unity. It is natural to wonder whether is a fundamental unit of this order. It turns out that the answer is in general positive, and that a fundamental unit of this order can be explicitly given (as an explicit polynomial in ) in the rare cases when the answer is negative. This paper is a self-contained exposition of the solution to this problem, solution which was up to now scattered in many papers in the literature. We also include the state of the art in the case that the rank of the group of units of the order is greater than when now one wonders whether the set can be completed in a system of fundamental units of the order .
Soit une unité algébrique pour laquelle le rang du groupe des unités de l’ordre est égal à . Supposons que ne soit pas une racine complexe de l’unité. Il est alors naturel de se demander si est une unité fondamentale de cet ordre. Nous montrons que la réponse est en général positive et que, dans les rares cas où elle ne l’est pas, une unité fondamentale de cet ordre peut être explicitement donnée (comme polynôme en ). Nous présentons ici une exposition complète de la solution à ce problème, solution jusqu’à présent dispersée dans plusieurs articles. Nous incluons l’état de l’art de ce problème dans le cas où la rang du groupe des unités de l’ordre est strictement plus grand que , où la question naturelle est maintenant de savoir si on peut adjoindre à d’autres unités de l’ordre pour obtenir un système fondamental d’unités de cet ordre.
Published online:
DOI: 10.5802/pmb.12
Keywords: Cubic unit, cubic orders, quartic unit, quartic order, fundamental units.
@article{PMB_2015____41_0, author = {St\'ephane R. Louboutin}, title = {Fundamental units for orders generated by a unit}, journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres}, pages = {41--68}, publisher = {Presses universitaires de Franche-Comt\'e}, year = {2015}, doi = {10.5802/pmb.12}, zbl = {1414.11146}, language = {en}, url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.12/} }
TY - JOUR AU - Stéphane R. Louboutin TI - Fundamental units for orders generated by a unit JO - Publications mathématiques de Besançon. Algèbre et théorie des nombres PY - 2015 SP - 41 EP - 68 PB - Presses universitaires de Franche-Comté UR - https://pmb.centre-mersenne.org/articles/10.5802/pmb.12/ DO - 10.5802/pmb.12 LA - en ID - PMB_2015____41_0 ER -
%0 Journal Article %A Stéphane R. Louboutin %T Fundamental units for orders generated by a unit %J Publications mathématiques de Besançon. Algèbre et théorie des nombres %D 2015 %P 41-68 %I Presses universitaires de Franche-Comté %U https://pmb.centre-mersenne.org/articles/10.5802/pmb.12/ %R 10.5802/pmb.12 %G en %F PMB_2015____41_0
Stéphane R. Louboutin. Fundamental units for orders generated by a unit. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2015), pp. 41-68. doi : 10.5802/pmb.12. https://pmb.centre-mersenne.org/articles/10.5802/pmb.12/
[BHMMS] J. Beers, D. Henshaw, C. Mccall, S. Mulay and M. Spindler, Fundamentality of a cubic unit for , Math. Comp., 80 (2011), 563–578, Corrigenda and addenda, Math. Comp. 81 (2012), 2383–2387. | DOI | MR | Zbl
[Coh] H. Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, 138, Springer-Verlag, Berlin, 1993. | DOI | Zbl
[LL14] J. H. Lee and S. Louboutin, On the fundamental units of some cubic orders generated by units, Acta Arith., 165 (2014), 283–299. | DOI | MR | Zbl
[LL15] J. H. Lee and S. Louboutin, Determination of the orders generated by a cyclic cubic unit that are Galois invariant, J. Number Theory, 148 (2015), 33–39. | DOI | MR | Zbl
[Lou06] S. Louboutin, The class-number one problem for some real cubic number fields with negative discriminants, J. Number Theory, 121, (2006), 30–39. | DOI | MR | Zbl
[Lou10] S. Louboutin, On some cubic or quartic algebraic units, J. Number Theory, 130, (2010), 956–960. | DOI | MR | Zbl
[Lou12] S. Louboutin, On the fundamental units of a totally real cubic order generated by a unit, Proc. Amer. Math. Soc., 140, (2012), 429–436. | DOI | MR | Zbl
[Lou08a] S. Louboutin, The fundamental unit of some quadratic, cubic or quartic orders, J. Ramanujan Math. Soc. 23, No. 2 (2008), 191–210. | Zbl
[Lou08b] S. Louboutin, Localization of the complex zeros of parametrized families of polynomials, J. Symbolic Comput., 43, (2008), 304–309. | DOI | MR | Zbl
[MS] S. Mulay and M. Spindler, The positive discriminant case of Nagell’s theorem for certain cubic orders, J. Number Theory, 131, (2011), 470–486. | DOI | MR | Zbl
[Nag] T. Nagell, Zur Theorie der kubischen Irrationalitäten, Acta Math., 55, (1930), 33–65. | DOI | Zbl
[PL] S.-M. Park and G.-N. Lee, The class number one problem for some totally complex quartic number fields, J. Number Theory, 129, (2009), 1338–1349. | DOI | MR | Zbl
[Tho] E. Thomas, Fundamental units for orders in certain cubic number fields , J. Reine Angew. Math., 310, (1979), 33-55. | DOI | MR | Zbl
[Was] L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, 83, Springer-Verlag, Second Edition, 1997. | DOI | Zbl
Cited by Sources: