Realisable classes, Stickelberger subgroup and its behaviour under change of the base field
Publications mathématiques de Besançon. Algèbre et théorie des nombres (2015), pp. 69-92.

Soient K un corps de nombres d’anneau des entiers O K et G un groupe fini. On note R(O K [G]) l’ensemble des classes dans le groupe des classes des modules localement libres Cl(O K [G]) qui peuvent être obtenues par l’anneau des entiers des K-algèbres galoisiennes modérément ramifiées de groupe de Galois G. McCulloh a prouvé que, pour tout G, l’ensemble R(O K [G]) est contenu dans le soi-disant sous-groupe de Stickelberger St(O K [G]) dans Cl(O K [G]).

Dans ce papier d’abord nous nous focalisons sur la relation entre St(O K [G]) et Cl (O K [G]), où Cl (O K [G]) est le noyau du morphisme Cl(O K [G])Cl(O K ), induit par l’augmentation O K [G]O K . Puis, comme exemple de calcul du groupe St(O K [G]), nous montrons, en utilisant sa définition, que St([G]) est trivial si G est soit un groupe cyclique d’ordre p soit un groupe diédral d’ordre 2p, avec p premier impair.

Enfin, nous montrons la fonctorialité de St(O K [G]) par rapport au changement du corps de base. Ceci implique que, soit L est un corps de nombres, si N est une L-algèbre galoisienne modérément ramifiée, de groupe de Galois G, et St(O K [G]) est connu être trivial pour un certain sous-corps K de L, alors O N est un O K [G]-module stablement libre.

Let K be an algebraic number field with ring of integers O K and let G be a finite group. We denote by R(O K [G]) the set of classes in the locally free class group Cl(O K [G]) realisable by rings of integers in tamely ramified G-Galois K-algebras. McCulloh showed that, for every G, the set R(O K [G]) is contained in the so-called Stickelberger subgroup St(O K [G]) of Cl(O K [G]).

In this paper first we describe the relation between St(O K [G]) and Cl (O K [G]), where Cl (O K [G]) is the kernel of the morphism Cl(O K [G])Cl(O K ), induced by the augmentation map O K [G]O K . Then, as an example of computation of St(O K [G]), we show, just using its definition, that St([G]) is trivial, when G is a cyclic group of order p or a dihedral group of order 2p, where p is an odd prime number.

Finally we prove that St(O K [G]) has good functorial behaviour under change of the base field. This has the interesting consequence that, given an algebraic number field L, if N is a tame Galois L-algebra with Galois group G and St(O K [G]) is known to be trivial for some subfield K of L, then O N is stably free as an O K [G]-module.

Reçu le :
Publié le :
DOI : 10.5802/pmb.13
Classification : 11R33, 11R04, 11R18, 11R29, 11R32, 11R65
Mots clés : Galois module structure, Realisable classes, Locally free class groups, Fröhlich’s Hom-description of locally free class groups, Stickelberger’s theorem
@article{PMB_2015____69_0,
     author = {Andrea Siviero},
     title = {Realisable classes, {Stickelberger} subgroup and its behaviour under change of the base field},
     journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres},
     pages = {69--92},
     publisher = {Presses universitaires de Franche-Comt\'e},
     year = {2015},
     doi = {10.5802/pmb.13},
     zbl = {1414.11152},
     language = {en},
     url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.13/}
}
TY  - JOUR
AU  - Andrea Siviero
TI  - Realisable classes, Stickelberger subgroup and its behaviour under change of the base field
JO  - Publications mathématiques de Besançon. Algèbre et théorie des nombres
PY  - 2015
SP  - 69
EP  - 92
PB  - Presses universitaires de Franche-Comté
UR  - https://pmb.centre-mersenne.org/articles/10.5802/pmb.13/
DO  - 10.5802/pmb.13
LA  - en
ID  - PMB_2015____69_0
ER  - 
%0 Journal Article
%A Andrea Siviero
%T Realisable classes, Stickelberger subgroup and its behaviour under change of the base field
%J Publications mathématiques de Besançon. Algèbre et théorie des nombres
%D 2015
%P 69-92
%I Presses universitaires de Franche-Comté
%U https://pmb.centre-mersenne.org/articles/10.5802/pmb.13/
%R 10.5802/pmb.13
%G en
%F PMB_2015____69_0
Andrea Siviero. Realisable classes, Stickelberger subgroup and its behaviour under change of the base field. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2015), pp. 69-92. doi : 10.5802/pmb.13. https://pmb.centre-mersenne.org/articles/10.5802/pmb.13/

[AC15] A. Agboola and L. McCulloh, On the relative Galois module structure of rings of integers in tame extensions, Available at: http://arxiv.org/abs/1410.4829. | DOI | MR | Zbl

[BS13] N. P. Byott and B. Sodaïgui, Realizable Galois module classes over the group ring for non abelian extensions, Ann. Inst. Fourier (Grenoble), 63 (1):303–371, 2013. | DOI | MR | Zbl

[BS05a] N. P. Byott and B. Sodaïgui, Galois module structure for extensions of degree 8: realizable classes over the group ring, J. Number Theory, 112 (1):1–19, 2005. | DOI | MR | Zbl

[BS05b] N. P. Byott and B. Sodaïgui, Realizable Galois module classes for tetrahedral extensions, Compos. Math., 141 (3):573–582, 2005. | DOI | MR | Zbl

[CR81] C. W. Curtis and I. Reiner, Methods of representation theory. Vol. I, Pure and Applied Mathematics (New York). John Wiley & Sons Inc., New York, 1981. With applications to finite groups and orders, A Wiley-Interscience Publication. | Zbl

[CR87] C. W. Curtis and I. Reiner, Methods of representation theory. Vol. II, Pure and Applied Mathematics (New York). John Wiley & Sons Inc., New York, 1987. With applications to finite groups and orders, A Wiley-Interscience Publication. | Zbl

[Lan94] S. Lang, Algebraic number theory, volume 110 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1994. | DOI | Zbl

[McC77] L. R. McCulloh, A Stickelberger condition on Galois module structure for Kummer extensions of prime degree, In Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), pages 561–588. Academic Press, London, 1977.

[McC83] L. R. McCulloh, Galois module structure of elementary abelian extensions, J. Algebra, 82 (1):102–134, 1983. | DOI | MR | Zbl

[McC87] L. R. McCulloh, Galois module structure of abelian extensions, J. Reine Angew. Math., 375/376:259–306, 1987. | DOI | MR | Zbl

[McC] L. R. McCulloh, From galois module classes to steinitz classes. arXiv:1207.5702 - Informal report given in Oberwolfach in February 2002.

[Rei03] I. Reiner, Maximal orders, volume 28 of London Mathematical Society Monographs. New Series. The Clarendon Press Oxford University Press, Oxford, 2003. Corrected reprint of the 1975 original, with a foreword by M. J. Taylor. | Zbl

[Rim59] D. S. Rim, Modules over finite groups, Ann. of Math. (2), 69:700–712, 1959. | DOI | MR | Zbl

[Ser94] J. P. Serre, Cohomologie galoisienne, volume 5 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, fifth edition, 1994. | DOI

[Siv13] A. Siviero, Class invariants for tame Galois algebras. PhD thesis, Université Bordeaux I - Universiteit Leiden, 2013. Available at: http://tel.archives-ouvertes.fr/tel-00847787.

[Swa62] R. G. Swan, Projective modules over group rings and maximal orders Ann. of Math. (2), 76:55–61, 1962. | DOI | MR | Zbl

[Tay81] M. J. Taylor, On Fröhlich’s conjecture for rings of integers of tame extensions, Invent. Math., 63(1):41–79, 1981. | DOI | Zbl

[Was97] L. C. Washington, Introduction to cyclotomic fields, volume 83 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1997. | DOI | Zbl

Cité par Sources :