A note on Kawashima functions
Publications mathématiques de Besançon. Algèbre et théorie des nombres, no. 1 (2019), pp. 151-163.

This note is a survey of results on the function F k (z) introduced by G. Kawashima, and its applications to the study of multiple zeta values. We stress the viewpoint that the Kawashima function is a generalization of the digamma function ψ(z), and explain how various formulas for ψ(z) are generalized. We also discuss briefly the relationship of the results on the Kawashima functions with the recent work on Kawashima’s MZV relation by M. Kaneko and the author.

L’objet de cette note est de faire une revue des résultats sur la fonction F k (z) définie par G. Kawashima et des applications à l’étude des valeurs de fonctions zêtas multiples. Nous mettons l’accent sur le fait que cette fonction de Kawashima est une généralisation de la fonction digamma ψ(z) et nous expliquons comment des formules valables pour ψ(z) se généralisent. Nous survolons également les liens entre les résultats sur les fonctions de G. Kawashima avec les travaux récents des relations MZV de Kawashima de M. Kaneko et de l’auteur.

Published online:
DOI: 10.5802/pmb.38
Classification: 11M32,  33B15
Keywords: Kawashima functions, Digamma function, Polygamma functions, Multiple zeta values
Shuji Yamamoto 1

1 Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
@article{PMB_2019___1_151_0,
     author = {Shuji Yamamoto},
     title = {A note on {Kawashima} functions},
     journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres},
     pages = {151--163},
     publisher = {Presses universitaires de Franche-Comt\'e},
     number = {1},
     year = {2019},
     doi = {10.5802/pmb.38},
     language = {en},
     url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.38/}
}
TY  - JOUR
TI  - A note on Kawashima functions
JO  - Publications mathématiques de Besançon. Algèbre et théorie des nombres
PY  - 2019
DA  - 2019///
SP  - 151
EP  - 163
IS  - 1
PB  - Presses universitaires de Franche-Comté
UR  - https://pmb.centre-mersenne.org/articles/10.5802/pmb.38/
UR  - https://doi.org/10.5802/pmb.38
DO  - 10.5802/pmb.38
LA  - en
ID  - PMB_2019___1_151_0
ER  - 
%0 Journal Article
%T A note on Kawashima functions
%J Publications mathématiques de Besançon. Algèbre et théorie des nombres
%D 2019
%P 151-163
%N 1
%I Presses universitaires de Franche-Comté
%U https://doi.org/10.5802/pmb.38
%R 10.5802/pmb.38
%G en
%F PMB_2019___1_151_0
Shuji Yamamoto. A note on Kawashima functions. Publications mathématiques de Besançon. Algèbre et théorie des nombres, no. 1 (2019), pp. 151-163. doi : 10.5802/pmb.38. https://pmb.centre-mersenne.org/articles/10.5802/pmb.38/

[1] Michael E. Hoffman Quasi-symmetric functions and mod p multiple harmonic sums, Kyushu J. Math., Volume 69 (2015) no. 2, pp. 345-366 | Zbl: 1382.11066

[2] Masanobu Kaneko; Shuji Yamamoto A new integral-series identity of multiple zeta values and regularizations, Sel. Math., New Ser., Volume 24 (2018) no. 3, pp. 2499-2521 | Zbl: 06904447

[3] Gaku Kawashima A class of relations among multiple zeta values, J. Number Theory, Volume 129 (2009) no. 4, pp. 755-788 | Zbl: 1220.11103

[4] Gaku Kawashima Multiple series expressions for the Newton series which interpolate finite multiple harmonic sums (2009) (https://arxiv.org/abs/0905.0243)

[5] Yoshihiro Takeyama Quadratic relations for a q-analogue of multiple zeta values, Ramanujan J., Volume 27 (2012) no. 1, pp. 15-28 | Zbl: 1305.05021

[6] Tatsushi Tanaka On the quasi-derivation relation for multiple zeta values, J. Number Theory, Volume 129 (2009) no. 9, pp. 2021-2034 | Zbl: 1221.11188

[7] Tatsushi Tanaka; Noriko Wakabayashi An algebraic proof of the cyclic sum formula for multiple zeta values, J. Algebra, Volume 323 (2010) no. 3, pp. 766-778 | Zbl: 1231.11106

[8] Tatsushi Tanaka; Noriko Wakabayashi Kawashima’s relations for interpolated multiple zeta values, J. Algebra, Volume 447 (2016), pp. 424-431 | Zbl: 1370.11104

[9] Shuji Yamamoto Multiple zeta-star values and multiple integrals, RIMS Kôkyûroku Bessatsu, Volume B68 (2017), pp. 3-14 | Zbl: 06937986

Cited by Sources: