Linnik type problems concern the distribution of projections of integral points on the unit sphere as their norm increases, and different generalizations of this phenomenon. Our work addresses a question of this type: we prove the uniform distribution of the projections of primitive points in the -adic unit sphere, as their (real) norm tends to infinity. The proof is via counting lattice points in semi-simple -arithmetic groups.
Les problèmes de type Linnik concernent la distribution des projections des points entiers sur la sphère unitaire lorsque leur norme augmente et différentes généralisations de ce phénomène. Notre travail s’intéresse à une question de ce type : nous prouvons la distribution uniforme des projections des points primitifs de sur la sphère unitaire -adique lorsque leur norme (réelle) tend vers l’infini. La preuve se fait en comptant les points d’un réseau dans des -groupes arithmétiques semi-simples.
@article{PMB_2023____85_0, author = {Antonin Guilloux and Tal Horesh}, title = {$p$-adic {Directions} of {Primitive} {Vectors}}, journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres}, pages = {85--107}, publisher = {Presses universitaires de Franche-Comt\'e}, year = {2023}, doi = {10.5802/pmb.50}, language = {en}, url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.50/} }
TY - JOUR AU - Antonin Guilloux AU - Tal Horesh TI - $p$-adic Directions of Primitive Vectors JO - Publications mathématiques de Besançon. Algèbre et théorie des nombres PY - 2023 SP - 85 EP - 107 PB - Presses universitaires de Franche-Comté UR - https://pmb.centre-mersenne.org/articles/10.5802/pmb.50/ DO - 10.5802/pmb.50 LA - en ID - PMB_2023____85_0 ER -
%0 Journal Article %A Antonin Guilloux %A Tal Horesh %T $p$-adic Directions of Primitive Vectors %J Publications mathématiques de Besançon. Algèbre et théorie des nombres %D 2023 %P 85-107 %I Presses universitaires de Franche-Comté %U https://pmb.centre-mersenne.org/articles/10.5802/pmb.50/ %R 10.5802/pmb.50 %G en %F PMB_2023____85_0
Antonin Guilloux; Tal Horesh. $p$-adic Directions of Primitive Vectors. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2023), pp. 85-107. doi : 10.5802/pmb.50. https://pmb.centre-mersenne.org/articles/10.5802/pmb.50/
[1] Integer points on spheres and their orthogonal grids, J. Lond. Math. Soc., Volume 93 (2016) no. 2, pp. 143-158 | MR | Zbl
[2] Integer points on spheres and their orthogonal lattices, Invent. Math., Volume 206 (2016) no. 2, pp. 379-396 | MR | Zbl
[3] Effective equidistribution of -integral points on symmetric varieties, Ann. Inst. Fourier, Volume 62 (2012) no. 5, pp. 1889-1942 | DOI | Numdam | MR | Zbl
[4] Arithmetic subgroups of algebraic groups, Ann. Math., Volume 75 (1962), pp. 485-535 | DOI | MR | Zbl
[5] Measurable dynamics of simple -adic polynomials, Am. Math. Mon., Volume 112 (2005) no. 3, pp. 212-232 | DOI | MR | Zbl
[6] Hecke operators and equidistribution of Hecke points, Invent. Math., Volume 144 (2001) no. 2, pp. 327-351 | DOI | MR | Zbl
[7] Rational points on the sphere, Ramanujan J., Volume 7 (2003) no. 1, pp. 235-239 | DOI | MR | Zbl
[8] An introduction to the Linnik problems, Equidistribution in number theory, an introduction (NATO Science Series II: Mathematics, Physics and Chemistry), Volume 237, Springer, 2007, pp. 197-216 | DOI | MR | Zbl
[9] Distribution of periodic torus orbits on homogeneous spaces, Duke Math. J., Volume 148 (2009) no. 1, pp. 119-174 | MR | Zbl
[10] Equidistribution of primitive rational points on expanding horospheres, Compos. Math., Volume 152 (2016) no. 4, pp. 667-692 | DOI | MR | Zbl
[11] Distribution of shapes of orthogonal lattices, Ergodic Theory Dyn. Syst., Volume 39 (2019) no. 6, pp. 1531-1607 | DOI | MR | Zbl
[12] Ergodic theory (with a view towards number theory), Graduate Texts in Mathematics, 259, Springer, 2011 | DOI
[13] Mixing, Counting and Equidistribution in Lie Groups, Duke Math. J., Volume 71 (1993) no. 1, pp. 181-209 | MR | Zbl
[14] A relation between automorphic representations of and , Ann. Sci. Éc. Norm. Supér., Volume 11 (1978) no. 4, pp. 471-542 | DOI | Numdam | MR | Zbl
[15] The space of -adic norms, Acta Math., Volume 109 (1963) no. 1, pp. 137-177 | DOI | MR
[16] On various means involving the Fourier coefficients of cusp forms, Math. Z., Volume 183 (1983) no. 1, pp. 95-129 | DOI | MR | Zbl
[17] Counting lattice points, J. Reine Angew. Math., Volume 663 (2012), pp. 127-176 | MR | Zbl
[18] Equidistribution in -arithmetic and adelic spaces, Ann. Fac. Sci. Toulouse, Math., Volume 23 (2014) no. 5, pp. 1023-1048 | DOI | Numdam | MR | Zbl
[19] Horospherical coordinates of lattice points in hyperbolic space: effective counting and equidistribution (2016) (http://arxiv.org/abs/1612.08215)
[20] Equidistribution of primitive vectors, and the shortest solutions to their GCD equations (2019) (http://arxiv.org/abs/1903.01560)
[21] A practical guide to well roundedness (2020) (http://arxiv.org/abs/2011.12204)
[22] Functoriality for the exterior square of and the symmetric fourth of , J. Am. Math. Soc., Volume 16 (2003) no. 1, pp. 139-183 (with an appendix by D. Ramakrishnan, and an appendix co-authored by P. Sarnak) | MR
[23] Ergodic Properties of Algebraic Fields, Ergebnisse der Mathematik und ihrer Grenzgebiete, 45, Springer, 1968
[24] The asymptotic distribution of Frobenius numbers, Invent. Math., Volume 181 (2010) no. 1, pp. 179-207 | DOI | MR | Zbl
[25] Directions in Hyperbolic Lattices, J. Reine Angew. Math., Volume 740 (2018), pp. 161-186 | DOI | MR | Zbl
[26] Algebraic groups and number theory, Russ. Math. Surv., Volume 47 (1992) no. 2, pp. 133-161 | DOI | Zbl
[27] On the statistics of the minimal solution of a linear Diophantine equation and uniform distribution of the real part of orbits in hyperbolic spaces, Spectral analysis in geometry and number theory (Contemporary Mathematics), Volume 484, American Mathematical Society, 2009, pp. 187-194 | DOI | MR
[28] The distribution of sub-lattices of , Monatsh. Math., Volume 125 (1998) no. 1, pp. 37-81 | DOI
[29] Effective equidistribution of the real part of orbits on hyperbolic surfaces, Proc. Am. Math. Soc., Volume 141 (2013) no. 2, pp. 505-514 | DOI | MR | Zbl
Cited by Sources: