We discuss a digit principle for derivatives of certain -values in Tate algebras of positive characteristic discovered by David Goss.
Dans cet article nous discutons d’un principe des chiffres (« digit principle » ) en base pour les dérivées de certaines valeurs zêta dans les algèbres de Tate en caractéristique non nulle.
Published online:
Keywords: $L$-values in positive characteristic, log-algebraic theorem, Drinfeld modules
David Goss ; Bruno Anglès 1; Tuan Ngo Dac 2; Federico Pellarin 3; Floric Tavares Ribeiro 1
@article{PMB_2019___1_81_0, author = {David Goss and Bruno Angl\`es and Tuan Ngo Dac and Federico Pellarin and Floric Tavares Ribeiro}, title = {The digit principle and derivatives of certain $L$-series}, journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres}, pages = {81--102}, publisher = {Presses universitaires de Franche-Comt\'e}, number = {1}, year = {2019}, doi = {10.5802/pmb.30}, language = {en}, url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.30/} }
TY - JOUR AU - David Goss AU - Bruno Anglès AU - Tuan Ngo Dac AU - Federico Pellarin AU - Floric Tavares Ribeiro TI - The digit principle and derivatives of certain $L$-series JO - Publications mathématiques de Besançon. Algèbre et théorie des nombres PY - 2019 SP - 81 EP - 102 IS - 1 PB - Presses universitaires de Franche-Comté UR - https://pmb.centre-mersenne.org/articles/10.5802/pmb.30/ DO - 10.5802/pmb.30 LA - en ID - PMB_2019___1_81_0 ER -
%0 Journal Article %A David Goss %A Bruno Anglès %A Tuan Ngo Dac %A Federico Pellarin %A Floric Tavares Ribeiro %T The digit principle and derivatives of certain $L$-series %J Publications mathématiques de Besançon. Algèbre et théorie des nombres %D 2019 %P 81-102 %N 1 %I Presses universitaires de Franche-Comté %U https://pmb.centre-mersenne.org/articles/10.5802/pmb.30/ %R 10.5802/pmb.30 %G en %F PMB_2019___1_81_0
David Goss; Bruno Anglès; Tuan Ngo Dac; Federico Pellarin; Floric Tavares Ribeiro. The digit principle and derivatives of certain $L$-series. Publications mathématiques de Besançon. Algèbre et théorie des nombres, no. 1 (2019), pp. 81-102. doi : 10.5802/pmb.30. https://pmb.centre-mersenne.org/articles/10.5802/pmb.30/
[1] Rank one elliptic -modules and -harmonic series, Duke Math. J., Volume 73 (1994) no. 3, pp. 491-542 | Zbl
[2] Log-Algebraicity of Twisted -Harmonic Series and Special Values of -series in Characteristic , J. Number Theory, Volume 60 (1996) no. 1, pp. 165-209 | Zbl
[3] Tensor powers of the Carlitz module and zeta values, Ann. Math., Volume 132 (1990) no. 1, pp. 159-191 | Zbl
[4] Exceptional zeros of -series and Bernoulli-Carlitz numbers (2015) (to appear in Ann. Sc. Norm. Super. Pisa, Cl. Sci., https://arxiv.org/abs/1511.06209)
[5] Special functions and twisted -series, J. Théor. Nombres Bordeaux, Volume 29 (2017) no. 3, pp. 931-961 | Zbl
[6] Stark units in positive characteristic, Proc. Lond. Math. Soc., Volume 115 (2017) no. 4, pp. 763-812 | Zbl
[7] Functional identities for -series values in positive characteristic, J. Number Theory, Volume 142 (2014), pp. 223-251 | Zbl
[8] Universal Gauss–Thakur sums and -series, Invent. Math., Volume 200 (2015) no. 2, pp. 653-669 | Zbl
[9] Arithmetic of positive characteristic -series values in Tate algebras, Compos. Math., Volume 152 (2016) no. 1, pp. 1-61 (with and appendix by F. Demeslay) | Zbl
[10] Anderson–Stark units for , Trans. Am. Math. Soc., Volume 370 (2018) no. 3, pp. 1603-1627 | Zbl
[11] Arithmetic of characteristic special -values, Proc. Lond. Math. Soc., Volume 110 (2015) no. 4, pp. 1000-1032 (with an appendix by V. Bosser) | Zbl
[12] Arithmetic of function field units, Math. Ann., Volume 367 (2017) no. 1-2, pp. 501-579 | Zbl
[13] Some topics in the arithmetic of polynomials, Bull. Am. Math. Soc., Volume 48 (1942) no. 10, pp. 679-691 | Zbl
[14] The digit principle, J. Number Theory, Volume 84 (2000) no. 2, pp. 230-257 | Zbl
[15] Towards a class number formula for Drinfeld modules (2016) (Ph. D. Thesis)
[16] A class formula for -series in positive characteristic (2014) (https://arxiv.org/abs/1412.3704)
[17] Equivariant Special -values of abelian -modules (2015) (https://arxiv.org/abs/1503.07243, to appear in J. Number Theory)
[18] Special -values of abelian -modules, J. Number Theory, Volume 147 (2015), pp. 300-325 | Zbl
[19] Equivariant trace formula mod , C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 4, pp. 335-338 | Zbl
[20] -adic zeta functions, -series and measures for function fields, Invent. Math., Volume 55 (1979), pp. 107-116 | Zbl
[21] Basic Structures of Function Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 35, Springer, 1996 | Zbl
[22] Special -values and shtuka functions for Drinfeld modules on elliptic curves, Res. Math. Sci., Volume 5 (2018), 4, 47 pages | DOI
[23] Log-Algebraicity on Tensor Powers of the Carlitz Module and Special Values of Goss -Functions (in preparation)
[24] Values of certain -series in positive characteristic, Ann. Math., Volume 176 (2012) no. 3, pp. 2055-2093 | Zbl
[25] A Dirichlet unit theorem for Drinfeld modules, Math. Ann., Volume 348 (2010) no. 4, pp. 899-907 | Zbl
[26] Special -values of Drinfeld modules, Ann. Math., Volume 175 (2012) no. 1, pp. 369-391 | Zbl
[27] Certain quantities transcendental over , Duke Math. J., Volume 8 (1941), pp. 701-720 | Zbl
Cited by Sources: