We review some basic properties of multiple zeta values, in particular the theory of regularization and its connection to an identity between certain integral and series discovered in collaboration with S. Yamamoto. We also introduce the two “finite” versions of multiple zeta values, and a conjectural connection between them, which were discovered jointly with D. Zagier.
Nous décrivons certaines propriétés basiques des valeurs de fonctions zétas multiples. Nous explicitons en particulier la théorie des régularisations et son lien avec une identité, obtenue en collaboration avec S. Yamamoto, entre certaines intégrales et séries. Nous présentons également les deux versions « finies » des valeurs zétas multiples et un lien conjectural entre elles découvert conjointement avec D. Zagier.
Published online:
Keywords: multiple zeta values, regularization, finite multiple zeta values
Masanobu Kaneko 1
@article{PMB_2019___1_103_0, author = {Masanobu Kaneko}, title = {An introduction to classical and finite multiple zeta values}, journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres}, pages = {103--129}, publisher = {Presses universitaires de Franche-Comt\'e}, number = {1}, year = {2019}, doi = {10.5802/pmb.31}, language = {en}, url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.31/} }
TY - JOUR AU - Masanobu Kaneko TI - An introduction to classical and finite multiple zeta values JO - Publications mathématiques de Besançon. Algèbre et théorie des nombres PY - 2019 SP - 103 EP - 129 IS - 1 PB - Presses universitaires de Franche-Comté UR - https://pmb.centre-mersenne.org/articles/10.5802/pmb.31/ DO - 10.5802/pmb.31 LA - en ID - PMB_2019___1_103_0 ER -
%0 Journal Article %A Masanobu Kaneko %T An introduction to classical and finite multiple zeta values %J Publications mathématiques de Besançon. Algèbre et théorie des nombres %D 2019 %P 103-129 %N 1 %I Presses universitaires de Franche-Comté %U https://pmb.centre-mersenne.org/articles/10.5802/pmb.31/ %R 10.5802/pmb.31 %G en %F PMB_2019___1_103_0
Masanobu Kaneko. An introduction to classical and finite multiple zeta values. Publications mathématiques de Besançon. Algèbre et théorie des nombres, no. 1 (2019), pp. 103-129. doi : 10.5802/pmb.31. https://pmb.centre-mersenne.org/articles/10.5802/pmb.31/
[1] Analytic continuation of multiple zeta-functions and their values at non-positive integers, Acta Arith., Volume 98 (2001) no. 2, pp. 107-116 | Zbl
[2] Bernoulli Numbers and Zeta Functions, Springer Monographs in Mathematics, Springer, 2014 | Zbl
[3] Cyclotomic analogues of finite multiple zeta values, Compos. Math., Volume 154 (2018) no. 2, pp. 2701-2721 | Zbl
[4] Groupes fondamentaux motiviques de Tate mixte, Ann. Sci. Éc. Norm. Supér., Volume 38 (2005) no. 1, pp. 1-56 | Zbl
[5] Periods and mixed motives (2002) (preprint)
[6] New properties of multiple harmonic sums modulo and -analogues of Leshchiner’s series, Trans. Am. Math. Soc., Volume 366 (2014) no. 6, pp. 3131-3159 | Zbl
[7] Double shuffle relations for refined symmetric zeta values (2018) (https://arxiv.org/abs/1807.04747)
[8] References on multiple zeta values and Euler sums (https://www.usna.edu/Users/math/meh/biblio.html)
[9] The algebra of multiple harmonic series, J. Algebra, Volume 194 (1997) no. 2, pp. 477-495 | Zbl
[10] Quasi-symmetric functions and mod multiple harmonic sums, Kyushu J. Math., Volume 69 (2015) no. 2, pp. 345-366 | Zbl
[11] Derivation and double shuffle relations for multiple zeta values, Compos. Math., Volume 142 (2006) no. 2, pp. 307-338 | Zbl
[12] Multi-poly-Bernoulli numbers and finite multiple zeta values, J. Integer Seq., Volume 17 (2014) no. 4, 14.4.5, 12 pages | Zbl
[13] Double mélange des multizêtas finis et multizêtas symétrisés, C. R. Math. Acad. Sci. Paris, Volume 352 (2014) no. 10, pp. 767-771 | Zbl
[14] Finite Mordell-Tornheim multiple zeta values, Funct. Approximatio, Comment. Math., Volume 54 (2015) no. 1, pp. 65-72 | Zbl
[15] Weighted sum formulas for finite multiple zeta values, J. Number Theory, Volume 192 (2018), pp. 168-180 | Zbl
[16] Analogues of Aoki–Ohno and Le–Murakami relations in finite multiple zeta values (2018) (https://arxiv.org/abs/1810.04813)
[17] A new integral-series identity of multiple zeta values and regularizations, Sel. Math., New Ser., Volume 24 (2018) no. 3, pp. 2499-2521 | Zbl
[18] Finite multiple zeta values (in preparation)
[19] On the analytic continuation of various multiple zeta-functions, Number theory for the millennium II, A K Peters, 2002, pp. 417-440 | Zbl
[20] Derivation relations for finite multiple zeta values, Int. J. Number Theory, Volume 13 (2017) no. 2, pp. 419-427 | Zbl
[21] On multiple zeta values and finite multiple zeta values of maximal height, Int. J. Number Theory, Volume 14 (2018) no. 4, pp. 975-987 | Zbl
[22] Finite multiple zeta values associated with 2-colored rooted trees, J. Number Theory, Volume 181 (2017), pp. 99-116 | Zbl
[23] Ohno-type relation for finite multiple zeta values, Kyushu J. Math., Volume 72 (2018) no. 2, pp. 277-285 | Zbl
[24] Free Lie Algebras, London Mathematical Society Monographs, 7, Clarendon Press, 1993 | Zbl
[25] Multiple harmonic sums and Wolstenholme’s theorem, Int. J. Number Theory, Volume 9 (2013) no. 8, pp. 2033-2052 | Zbl
[26] Sum formula for finite multiple zeta values, J. Math. Soc. Japan, Volume 67 (2015) no. 3, pp. 1069-1076 | Zbl
[27] Bowman-Bradley type theorem for finite multiple zeta values, Tôhoku Math. J., Volume 68 (2016) no. 2, pp. 241-251 | Zbl
[28] Finite and etale polylogarithms, J. Number Theory, Volume 176 (2017), pp. 279-301 | Zbl
[29] On functional equations of finite multiple polylogarithms, J. Algebra, Volume 469 (2017), pp. 323-357 | Zbl
[30] Die linearen Beziehungen zwischen höheren Kommutatoren, Math. Z., Volume 51 (1948), pp. 367-376 | Zbl
[31] Congruences involving alternating multiple harmonic sums, Electron. J. Comb., Volume 17 (2010) no. 1, R16, 11 pages | Zbl
[32] Congruences of alternating multiple harmonic sums, J. Comb. Number Theory, Volume 2 (2010) no. 2, pp. 129-159 | Zbl
[33] Mixed Tate motives and multiple zeta values, Invent. Math., Volume 149 (2002) no. 2, pp. 339-369 | Zbl
[34] On developments in an arithmetic theory of the Bernoulli and allied numbers, Scripta Math., Volume 25 (1961), pp. 273-303 | Zbl
[35] Valeurs zêta multiples. Une introduction, J. Théor. Nombres Bordx, Volume 12 (2000) no. 2, pp. 581-595 | Zbl
[36] Multiple zeta-star values and multiple integrals, RIMS Kôkyûroku Bessatsu, Volume B68 (2017), pp. 3-14 | Zbl
[37] Finite real multiple zeta values generate the whole space , Int. J. Number Theory, Volume 12 (2016) no. 3, pp. 787-812 | Zbl
[38] Values of zeta functions and their applications, First European congress of mathematics (ECM) (Progress in Mathematics), Volume 120, Birkhäuser, 1994, pp. 497-512 | Zbl
[39] Wolstenholme type theorem for multiple harmonic sums, Int. J. Number Theory, Volume 4 (2008) no. 1, pp. 73-106 | Zbl
[40] Mod structure of alternating and non-alternating multiple harmonic sums, J. Théor. Nombres Bordx, Volume 23 (2011) no. 1, pp. 299-308 | Zbl
Cited by Sources: