In a section of his 1876 treatise Theorie der Abel’schen Functionen vom Geschlecht Weber proved a formula that expresses the bitangents of a non-singular plane quartic in terms of Riemann theta constants (Thetanullwerte). The present note is devoted to a modern presentation of Weber’s formula. In the end a connection with the universal bitangent matrix is also displayed.
Dans une section de son traité Theorie der Abel’schen Functionen vom Geschlecht , paru en 1876, Weber a démontré une formule qui permet de déterminer les équations des bitangentes d’une quartique plane non singulière à partir des constantes theta de Riemann (Thetanullwerte). Le but de cette note est de présenter la formule de Weber en langage moderne. On aussi montre une connexion avec la matrice universelle des bitangentes.
Published online:
Mots-clés : Plane quartics, theta functions, bitangents.
Alessio Fiorentino 1
@article{PMB_2019___2_5_0, author = {Alessio Fiorentino}, title = {Weber{\textquoteright}s formula for the bitangents of a smooth plane quartic}, journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres}, pages = {5--17}, publisher = {Presses universitaires de Franche-Comt\'e}, number = {2}, year = {2019}, doi = {10.5802/pmb.33}, language = {en}, url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.33/} }
TY - JOUR AU - Alessio Fiorentino TI - Weber’s formula for the bitangents of a smooth plane quartic JO - Publications mathématiques de Besançon. Algèbre et théorie des nombres PY - 2019 SP - 5 EP - 17 IS - 2 PB - Presses universitaires de Franche-Comté UR - https://pmb.centre-mersenne.org/articles/10.5802/pmb.33/ DO - 10.5802/pmb.33 LA - en ID - PMB_2019___2_5_0 ER -
%0 Journal Article %A Alessio Fiorentino %T Weber’s formula for the bitangents of a smooth plane quartic %J Publications mathématiques de Besançon. Algèbre et théorie des nombres %D 2019 %P 5-17 %N 2 %I Presses universitaires de Franche-Comté %U https://pmb.centre-mersenne.org/articles/10.5802/pmb.33/ %R 10.5802/pmb.33 %G en %F PMB_2019___2_5_0
Alessio Fiorentino. Weber’s formula for the bitangents of a smooth plane quartic. Publications mathématiques de Besançon. Algèbre et théorie des nombres, no. 2 (2019), pp. 5-17. doi : 10.5802/pmb.33. https://pmb.centre-mersenne.org/articles/10.5802/pmb.33/
[1] Geometry of algebraic curves, Grundlehren der Mathematischen Wissenschaften, 267, Springer, 1985 | MR | Zbl
[2] Recovering plane curves from their bitangents, J. Algebr. Geom., Volume 12 (2003) no. 2, pp. 225-244 | DOI | MR | Zbl
[3] Plane quartics: the universal matrix of bitangents, Isr. J. Math., Volume 217 (2017), pp. 111-138 | DOI | MR | Zbl
[4] Classical algebraic geometry: a modern view, Cambridge University Press, 2012 | Zbl
[5] On the Riemann–Jacobi formula, Nachr. Akad. Wiss. Gött., Volume 1979 (1979), pp. 61-73 | MR | Zbl
[6] Über die constanten Factoren der Thetareihen, Kronecker J., Volume 98 (1885), pp. 244-263 | MR | Zbl
[7] Principles of algebraic geometry, Pure and Applied Mathematics, John Wiley & Sons, 1978 | Zbl
[8] On some geometric constructions related to theta characteristics, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins University Press, 2004, pp. 279-311 | Zbl
[9] Jacobian Nullwerte and algebraic equations, J. Algebra, Volume 253 (2002) no. 1, pp. 112-132 | DOI | MR | Zbl
[10] On the Torelli problem and Jacobian Nullwerte in genus three, Mich. Math. J., Volume 60 (2011) no. 1, pp. 51-65 | DOI | MR | Zbl
[11] Theta functions, Grundlehren der Mathematischen Wissenschaften, 194, Springer, 1972 | Zbl
[12] Multiplicity one theorem and problems related to Jacobi’s formula, Am. J. Math., Volume 105 (1983), pp. 157-187 | DOI | MR | Zbl
[13] Any smooth plane quartic can be reconstructed from its bitangents, Isr. J. Math., Volume 146 (2005), pp. 371-379 | DOI | MR | Zbl
[14] A new proof of a Thomae-like formula for non hyperelliptic genus 3 curves, Arithmetic, geometry, cryptography and coding theory (Contemporary Mathematics), Volume 686, American Mathematical Society, 2017, pp. 137-155 | DOI | MR | Zbl
[15] Theta functions with applications to Riemann surfaces, The Williams & Wilkins Company, 1974 | Zbl
[16] Theorie der Abel’schen Functionen vom Geschlecht , Druck und Verlag von Georg Reimer, 1876 | Zbl
Cited by Sources: