Let be a number field. We prove that its ray class group modulo (resp. ) if (resp. ) characterizes its -rationality. Then we give two short and very fast PARI Programs (Sections 3.1, 3.2) testing if (defined by an irreducible monic polynomial) is -rational or not. For quadratic fields we verify some densities of -rational fields related to Cohen–Lenstra–Martinet ones and analyse Greenberg’s conjecture on the existence of -rational fields with Galois groups needed for the construction of some Galois representations with open image. We give examples for , and (Sections 5.1, 5.2) and illustrate other approaches (Pitoun–Varescon, Barbulescu–Ray). We conclude about the existence of imaginary quadratic fields, -rational for all (Angelakis–Stevenhagen study on the concept of “minimal absolute abelian Galois group”) which may enlighten a conjecture of -rationality (Hajir–Maire) giving large Iwasawa -invariants of some uniform pro--groups. All programs (in “verbatim”) can be used by the reader by simply copied and pasted.
Soit un corps de nombres. Nous montrons que son corps de classes de rayon modulo (resp. ) si (resp. ) caractérise sa -rationalité. Puis nous donnons deux programmes PARI (Sections 3.1, 3.2) très courts et rapides testant si (défini par un polynôme irréductible unitaire) est -rationnel ou non. Pour les corps quadratiques nous vérifions certaines densités de corps -rationnels en relation avec celles de Cohen–Lenstra–Martinet et nous analysons la conjecture de Greenberg sur l’existence de corps -rationnels de groupes de Galois nécessaires pour la construction de certaines représentations galoisiennes d’image ouverte. Nous donnons des exemples pour , et (Sections 5.1, 5.2) et illustrons d’autres approches (Pitoun–Varescon, Barbulescu–Ray). Nous concluons sur l’existence de corps quadratiques imaginaires -rationnels pour tout (étude de Angelakis–Stevenhagen sur le concept de “groupe de Galois abélien absolu minimal”) qui peut éclairer une conjecture de -rationalité (Hajir–Maire) donnant de grands invariants d’Iwasawa relatifs à certains pro--groupes uniformes. Tous les programmes (en “verbatim”) sont utilisables par le lecteur par simple copié-collé.
Published online:
Mots-clés : $p$-rational fields, class field theory, abelian $p$-ramification, PARI/GP programs, quadratic fields, Greenberg’s conjecture on representations
Georges Gras 1
@article{PMB_2019___2_29_0, author = {Georges Gras}, title = {On $p$-rationality of number fields. {Applications} {\textendash} {PARI/GP} programs}, journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres}, pages = {29--51}, publisher = {Presses universitaires de Franche-Comt\'e}, number = {2}, year = {2019}, doi = {10.5802/pmb.35}, language = {en}, url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.35/} }
TY - JOUR AU - Georges Gras TI - On $p$-rationality of number fields. Applications – PARI/GP programs JO - Publications mathématiques de Besançon. Algèbre et théorie des nombres PY - 2019 SP - 29 EP - 51 IS - 2 PB - Presses universitaires de Franche-Comté UR - https://pmb.centre-mersenne.org/articles/10.5802/pmb.35/ DO - 10.5802/pmb.35 LA - en ID - PMB_2019___2_29_0 ER -
%0 Journal Article %A Georges Gras %T On $p$-rationality of number fields. Applications – PARI/GP programs %J Publications mathématiques de Besançon. Algèbre et théorie des nombres %D 2019 %P 29-51 %N 2 %I Presses universitaires de Franche-Comté %U https://pmb.centre-mersenne.org/articles/10.5802/pmb.35/ %R 10.5802/pmb.35 %G en %F PMB_2019___2_29_0
Georges Gras. On $p$-rationality of number fields. Applications – PARI/GP programs. Publications mathématiques de Besançon. Algèbre et théorie des nombres, no. 2 (2019), pp. 29-51. doi : 10.5802/pmb.35. https://pmb.centre-mersenne.org/articles/10.5802/pmb.35/
[1] Imaginary quadratic fields with isomorphic abelian Galois groups, ANTS X, Proceedings of the Tenth Algorithmic Number Theory Symposium (The Open Book Series), Volume 1 (2013), pp. 21-39 | DOI | MR | Zbl
[2] Some remarks and experimentations on Greenberg’s -rationality conjecture (2017) (https://arxiv.org/abs/1706.04847)
[3] The logarithmic class group package in PARI/GP, Publ. Math. Besançon, Algèbre Théorie Nombres, Volume 2016 (2016), pp. 5-18 | Zbl
[4] Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983 (Lecture Notes in Mathematics), Volume 1068, Springer, 1984, pp. 33-62 | DOI | MR | Zbl
[5] Class groups of number fields: Numerical heuristics, Math. Comput., Volume 48 (1987), pp. 123-137 | DOI | MR | Zbl
[6] The Cohen–Lenstra heuristics, moments and -ranks of some groups, Acta Arith., Volume 164 (2014) no. 3, pp. 245-263 | DOI | MR | Zbl
[7] Local Fields and Their Extensions, Translations of Mathematical Monographs, 121, American Mathematical Society, 2002 | MR | Zbl
[8] Cohen–Lenstra heuristics of quadratic number fields, Algorithmic number theory (Lecture Notes in Computer Science), Volume 4076, Springer, 2006, pp. 40-55 | DOI | MR | Zbl
[9] Remarks on of number fields, J. Number Theory, Volume 23 (1986), pp. 322-335 | DOI | Zbl
[10] Class Field Theory: from theory to practice, Springer Monographs in Mathematics, Springer, 2005, xiii+507 pages | Zbl
[11] On the structure of the Galois group of the Abelian closure of a number field, J. Théor. Nombres Bordeaux, Volume 26 (2014) no. 3, pp. 635-654 | DOI | MR | Zbl
[12] Les -régulateurs locaux d’un nombre algébrique : conjectures -adiques, Can. J. Math., Volume 68 (2016) no. 3, pp. 571-624 | DOI | Zbl
[13] The -adic Kummer–Leopoldt constant: normalized -adic regulator, Int. J. Number Theory, Volume 14 (2018) no. 2, pp. 329-337 | DOI | MR | Zbl
[14] Heuristics and conjectures in the direction of a -adic Brauer–Siegel theorem, Math. Comput., Volume 88 (2019) no. 318, pp. 1829-1965 | MR | Zbl
[15] Practice of incomplete p-ramification over a number field – History of abelian p-ramification (2019) (https://arxiv.org/abs/1904.10707v2, to appear in Commun. Adv. Math. Sci.)
[16] Sur les corps de nombres réguliers, Math. Z., Volume 202 (1989), pp. 343-365 | DOI | Zbl
[17] Galois representations with open image, Ann. Math. Qué., Volume 40 (2016) no. 1, pp. 83-119 | DOI | MR | Zbl
[18] Prime decomposition and the Iwasawa mu-invariant, Math. Proc. Camb. Philos. Soc., Volume 166 (2019) no. 3, pp. 599-617 | DOI | MR | Zbl
[19] Valuations of -adic regulators of cyclic cubic fields, J. Number Theory, Volume 169 (2016), pp. 86-102 | DOI | MR | Zbl
[20] Théorie -adique globale du corps de classes, J. Théor. Nombres Bordeaux, Volume 10 (1998) no. 2, pp. 355-397 | DOI | Zbl
[21] Corps -rationnels, corps -réguliers et ramification restreinte, J. Théor. Nombres Bordeaux, Volume 5 (1993) no. 2, pp. 343-363 | DOI | Zbl
[22] Class numbers of ray class fields of imaginary quadratic fields, Math. Comput., Volume 80 (2011) no. 274, pp. 1099-1122 | DOI | MR | Zbl
[23] Sur les -extensions des corps -rationnels, Math. Nachr., Volume 149 (1990), pp. 163-176 | DOI | MR | Zbl
[24] Sur l’arithmétique des corps de nombres -rationnels, Séminaire de théorie des nombres (Paris 1987-88) (Progress in Mathematics), Volume 81, Springer, 1990 | DOI | Zbl
[25] A Variation on Leopoldt’s Conjecture: Some Local Units instead of All Local Units (2013) (https://arxiv.org/abs/1308.4637)
[26] On the isomorphisms of the Galois groups of the maximal abelian extensions of imaginary quadratic fields, Natur. Sci. Rep. Ochanomizu Univ., Volume 27 (1976) no. 2, pp. 155-161 | MR | Zbl
[27] -ranks and the general model for statistics of ray class groups of imaginary quadratic fields (2017) (https://arxiv.org/abs/1710.07587)
[28] Calculs théoriques et explicites en théorie d’Iwasawa (2010) (Ph. D. Thesis)
[29] Computing the torsion of the -ramified module of a number field, Math. Comput., Volume 84 (2015) no. 291, pp. 371-383 | DOI | MR | Zbl
[30] PARI/GP version 2.9.0, 2016 (available from http://pari.math.u-bordeaux.fr/)
[31] Introduction to cyclotomic fields, Graduate Texts in Mathematics, 83, Springer, 1997 | MR | Zbl
Cited by Sources: