This work contains a proof of a non-trivial explicit quantitative bound in the eigenvalue aspect for the sup-norm of a Hecke–Maass cusp form restricted to a compact set.
Ce travail contient une preuve d’une borne non-triviale explicite quantitative par rapport à la valeur propre pour la norme infinie d’une forme de Hecke–Maass cuspidale de restreinte à un ensemble compact.
@article{PMB_2019___2_53_0, author = {Roman Holowinsky and Kevin Nowland and Guillaume Ricotta and Emmanuel Royer}, title = {On the sup-norm of $SL_3$ {Hecke{\textendash}Maass} cusp forms}, journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres}, pages = {53--80}, publisher = {Presses universitaires de Franche-Comt\'e}, number = {2}, year = {2019}, doi = {10.5802/pmb.36}, language = {en}, url = {https://pmb.centre-mersenne.org/articles/10.5802/pmb.36/} }
TY - JOUR TI - On the sup-norm of $SL_3$ Hecke–Maass cusp forms JO - Publications mathématiques de Besançon. Algèbre et théorie des nombres PY - 2019 DA - 2019/// SP - 53 EP - 80 IS - 2 PB - Presses universitaires de Franche-Comté UR - https://pmb.centre-mersenne.org/articles/10.5802/pmb.36/ UR - https://doi.org/10.5802/pmb.36 DO - 10.5802/pmb.36 LA - en ID - PMB_2019___2_53_0 ER -
Roman Holowinsky; Kevin Nowland; Guillaume Ricotta; Emmanuel Royer. On the sup-norm of $SL_3$ Hecke–Maass cusp forms. Publications mathématiques de Besançon. Algèbre et théorie des nombres, no. 2 (2019), pp. 53-80. doi : 10.5802/pmb.36. https://pmb.centre-mersenne.org/articles/10.5802/pmb.36/
[1] On the global sup-norm of cusp forms, Israel J. Math., Volume 229 (2019) no. 1, pp. 357-379 | Article | MR: 3905609 | Zbl: 1412.11074
[2] Bounds for eigenforms on arithmetic hyperbolic 3-manifolds, Duke Math. J., Volume 165 (2016) no. 4, pp. 625-659 | Article | MR: 3474814 | Zbl: 1339.11062
[3] The sup-norm problem for PGL(4), Int. Math. Res. Not. (2015) no. 14, pp. 5311-5332 | Article | MR: 3384442 | Zbl: 1380.11071
[4] Subconvexity for sup-norms of cusp forms on , Sel. Math., New Ser., Volume 22 (2016) no. 3, pp. 1269-1287 | Article | MR: 3518551 | Zbl: 1352.11054
[5] Sup-norms of eigenfunctions on arithmetic ellipsoids, Int. Math. Res. Not. (2011) no. 21, pp. 4934-4966 | Article | MR: 2852302 | Zbl: 1294.11075
[6] The sup-norm problem on the Siegel modular space of rank two, Am. J. Math., Volume 138 (2016) no. 4, pp. 999-1027 | Article | MR: 3538149 | Zbl: 1350.11061
[7] Spectra of compact locally symmetric manifolds of negative curvature, Invent. Math., Volume 52 (1979) no. 1, pp. 27-93 | Article | MR: 532745 | Zbl: 0434.58019
[8] On the Plancherel formula and the Paley–Wiener theorem for spherical functions on semisimple Lie groups, Ann. Math., Volume 93 (1971), pp. 150-165 | Article | MR: 0289724 | Zbl: 0232.43007
[9] Automorphic forms and -functions for the group , Cambridge Studies in Advanced Mathematics, 99, Cambridge University Press, 2006, xiv+493 pages (With an appendix by Kevin A. Broughan) | MR: MR2254662 | Zbl: 1108.11039
[10] The amplification method in the Hecke algebra, Publ. Math. Besançon, Algèbre Théorie Nombres, Volume 2015 (2015), pp. 13-40 | Article | MR: 3525536 | Zbl: 1380.11053
[11] norms of eigenfunctions of arithmetic surfaces, Ann. Math., Volume 141 (1995) no. 2, pp. 301-320 | Article | MR: MR1324136 | Zbl: 0833.11019
[12] Pos(R) and Eisenstein series, Lecture Notes in Mathematics, 1868, Springer, 2005, viii+168 pages | MR: MR2166237 | Zbl: 1076.11031
[13] -norms on eigenfunctions for arithmetic hyperbolic -manifolds, Duke Math. J., Volume 77 (1995) no. 3, pp. 799-817 | Article | MR: 1324641 | Zbl: 0869.11050
[14] Restrictions of Maass forms to maximal flat subspaces, Int. Math. Res. Not. (2015) no. 16, pp. 6988-7015 | Article | MR: 3428953 | Zbl: 1385.11025
[15] Geodesic restrictions of arithmetic eigenfunctions, Duke Math. J., Volume 165 (2016) no. 3, pp. 463-508 | Article | MR: 3466161 | Zbl: 1377.11059
[16] norms of higher rank eigenfunctions and bounds for spherical functions, J. Eur. Math. Soc., Volume 18 (2016) no. 7, pp. 1437-1493 | Article | MR: 3506604 | Zbl: 1344.22003
[17] Geometric properties of eigenfunctions, Usp. Mat. Nauk, Volume 56 (2001) no. 6(342), pp. 67-88 | Article | MR: 1886720
[18] Integral matrices, Pure and Applied Mathematics, 45, Academic Press Inc., 1972, xvii+224 pages | MR: 0340283 | Zbl: 0254.15009
[19] Letter to C. Morawetz on bounds for eigenfunctions on symmetric spaces available at http://publications.ias.edu/sarnak/paper/480 (2004)
[20] Arithmetic quantum chaos, The Schur lectures (Tel Aviv, 1992) (Israel Mathematical Conference Proceedings), Volume 8, Bar-Ilan University, 1995, pp. 183-236 | MR: 1321639 | Zbl: 0831.58045
[21] Bounds for eigenfunctions of differential operators, Indiana Univ. Math. J., Volume 38 (1989) no. 3, pp. 669-682 | Article | MR: MR1017329 | Zbl: 0703.35133
[22] Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, 11, Princeton University Press, 1994, xiv+271 pages | MR: MR1291394 | Zbl: 0872.11023
[23] norms and quantum ergodicity on the sphere, Int. Math. Res. Not. (1997) no. 7, pp. 329-347 | Article | MR: 1440572 | Zbl: 0877.58056
Cited by Sources: