On p-rationality of number fields. Applications – PARI/GP programs
[Sur la p-rationalité des corps de nombres. Applications – Programmes PARI/GP]
Publications Mathématiques de Besançon, no. 2 (2019), pp. 29-51.

Soit K un corps de nombres. Nous montrons que son corps de classes de rayon modulo p 2 (resp. 8) si p>2 (resp. p=2) caractérise sa p-rationalité. Puis nous donnons deux programmes PARI (Sections 3.1, 3.2) très courts et rapides testant si K (défini par un polynôme irréductible unitaire) est p-rationnel ou non. Pour les corps quadratiques nous vérifions certaines densités de corps 3-rationnels en relation avec celles de Cohen–Lenstra–Martinet et nous analysons la conjecture de Greenberg sur l’existence de corps p-rationnels de groupes de Galois (/2) t nécessaires pour la construction de certaines représentations galoisiennes d’image ouverte. Nous donnons des exemples pour p=3, t=5 et t=6 (Sections 5.1, 5.2) et illustrons d’autres approches (Pitoun–Varescon, Barbulescu–Ray). Nous concluons sur l’existence de corps quadratiques imaginaires p-rationnels pour tout p2 (étude de Angelakis–Stevenhagen sur le concept de “groupe de Galois abélien absolu minimal”) qui peut éclairer une conjecture de p-rationalité (Hajir–Maire) donnant de grands invariants μ d’Iwasawa relatifs à certains pro-p-groupes uniformes. Tous les programmes (en “verbatim”) sont utilisables par le lecteur par simple copié-collé.

Let K be a number field. We prove that its ray class group modulo p 2 (resp. 8) if p>2 (resp. p=2) characterizes its p-rationality. Then we give two short and very fast PARI Programs (Sections 3.1, 3.2) testing if K (defined by an irreducible monic polynomial) is p-rational or not. For quadratic fields we verify some densities of 3-rational fields related to Cohen–Lenstra–Martinet ones and analyse Greenberg’s conjecture on the existence of p-rational fields with Galois groups (/2) t needed for the construction of some Galois representations with open image. We give examples for p=3, t=5 and t=6 (Sections 5.1, 5.2) and illustrate other approaches (Pitoun–Varescon, Barbulescu–Ray). We conclude about the existence of imaginary quadratic fields, p-rational for all p2 (Angelakis–Stevenhagen study on the concept of “minimal absolute abelian Galois group”) which may enlighten a conjecture of p-rationality (Hajir–Maire) giving large Iwasawa μ-invariants of some uniform pro-p-groups. All programs (in “verbatim”) can be used by the reader by simply copied and pasted.

Reçu le : 2017-10-30
Publié le : 2019-12-06
DOI : https://doi.org/10.5802/pmb.35
Classification : 11R04,  11R37,  11R11,  08-04
Mots clés: p-rational fields, class field theory, abelian p-ramification, PARI/GP programs, quadratic fields, Greenberg’s conjecture on representations
@article{PMB_2019___2_29_0,
     author = {Georges Gras},
     title = {On $p$-rationality of number fields. Applications -- PARI/GP programs},
     journal = {Publications Math\'ematiques de Besan\c con},
     pages = {29--51},
     publisher = {Presses universitaires de Franche-Comt\'e},
     number = {2},
     year = {2019},
     doi = {10.5802/pmb.35},
     language = {en},
     url = {pmb.centre-mersenne.org/item/PMB_2019___2_29_0/}
}
Gras, Georges. On $p$-rationality of number fields. Applications – PARI/GP programs. Publications Mathématiques de Besançon, no. 2 (2019), pp. 29-51. doi : 10.5802/pmb.35. https://pmb.centre-mersenne.org/item/PMB_2019___2_29_0/

[1] Athanasios Angelakis; Peter Stevenhagen Imaginary quadratic fields with isomorphic abelian Galois groups, ANTS X, Proceedings of the Tenth Algorithmic Number Theory Symposium, Mathematical Sciences Publishers (The Open Book Series) Tome 1 (2013), pp. 21-39 | Article | MR 3207406 | Zbl 1344.11072

[2] Razvan Barbulescu; Jishnu Ray Some remarks and experimentations on Greenberg’s p-rationality conjecture (2017) (https://arxiv.org/abs/1706.04847)

[3] Karim Belabas; Jean-François Jaulent The logarithmic class group package in PARI/GP, Publ. Math. Besançon, Algèbre Théorie Nombres, Tome 2016 (2016), pp. 5-18 | Zbl 06751599

[4] Henri Cohen; Hendrik W. jun. Lenstra Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983, Springer (Lecture Notes in Mathematics) Tome 1068 (1984), pp. 33-62 | Article | MR 756082 | Zbl 0558.12002

[5] Henri Cohen; Jacques Martinet Class groups of number fields: Numerical heuristics, Math. Comput., Tome 48 (1987), pp. 123-137 | Article | MR 866103 | Zbl 0627.12006

[6] Christophe Delaunay; Frédéric Jouhet The Cohen–Lenstra heuristics, moments and p j -ranks of some groups, Acta Arith., Tome 164 (2014) no. 3, pp. 245-263 | Article | MR 3238116 | Zbl 1306.11088

[7] Ivan B. Fesenko; Sergei V. Vostokov Local Fields and Their Extensions, American Mathematical Society, Translations of Mathematical Monographs, Tome 121 (2002) | MR 1915966 | Zbl 1156.11046

[8] Étienne Fouvry; Jürgen Klüners Cohen–Lenstra heuristics of quadratic number fields, Algorithmic number theory, Springer (Lecture Notes in Computer Science) Tome 4076 (2006), pp. 40-55 | Article | MR 2282914 | Zbl 1143.11352

[9] Georges Gras Remarks on K 2 of number fields, J. Number Theory, Tome 23 (1986), pp. 322-335 | Article | Zbl 0589.12010

[10] Georges Gras Class Field Theory: from theory to practice, Springer, Springer Monographs in Mathematics (2005), xiii+507 pages | Zbl 1019.11032

[11] Georges Gras On the structure of the Galois group of the Abelian closure of a number field, J. Théor. Nombres Bordeaux, Tome 26 (2014) no. 3, pp. 635-654 | Article | MR 3320496 | Zbl 1360.11122

[12] Georges Gras Les θ-régulateurs locaux d’un nombre algébrique : conjectures p-adiques, Can. J. Math., Tome 68 (2016) no. 3, pp. 571-624 | Article | Zbl 1351.11033

[13] Georges Gras The p-adic Kummer–Leopoldt constant: normalized p-adic regulator, Int. J. Number Theory, Tome 14 (2018) no. 2, pp. 329-337 | Article | MR 3761496 | Zbl 1393.11071

[14] Georges Gras Heuristics and conjectures in the direction of a p-adic Brauer–Siegel theorem, Math. Comput., Tome 88 (2019) no. 318, pp. 1829-1965 | MR 3925492 | Zbl 07040636

[15] Georges Gras Practice of incomplete p-ramification over a number field – History of abelian p-ramification (2019) (https://arxiv.org/abs/1904.10707v2, to appear in Commun. Adv. Math. Sci.)

[16] Georges Gras; Jean-François Jaulent Sur les corps de nombres réguliers, Math. Z., Tome 202 (1989), pp. 343-365 | Article | Zbl 0704.11040

[17] Ralph Greenberg Galois representations with open image, Ann. Math. Qué., Tome 40 (2016) no. 1, pp. 83-119 | Article | MR 3512524 | Zbl 1414.11151

[18] Farshid Hajir; Christian Maire Prime decomposition and the Iwasawa mu-invariant, Math. Proc. Camb. Philos. Soc., Tome 166 (2019) no. 3, pp. 599-617 | Article | MR 3933912 | Zbl 07054517

[19] Tommy Hofmann; Yinan Zhang Valuations of p-adic regulators of cyclic cubic fields, J. Number Theory, Tome 169 (2016), pp. 86-102 | Article | MR 3531231 | Zbl 1409.11141

[20] Jean-François Jaulent Théorie -adique globale du corps de classes, J. Théor. Nombres Bordeaux, Tome 10 (1998) no. 2, pp. 355-397 | Article | Zbl 0938.11052

[21] Jean-François Jaulent; Thong Nguyen Quang Do Corps p-rationnels, corps p-réguliers et ramification restreinte, J. Théor. Nombres Bordeaux, Tome 5 (1993) no. 2, pp. 343-363 | Article | Zbl 0957.11046

[22] Ömer Küçüksakalli Class numbers of ray class fields of imaginary quadratic fields, Math. Comput., Tome 80 (2011) no. 274, pp. 1099-1122 | Article | MR 2772114 | Zbl 1233.11115

[23] Abbas Movahhedi Sur les p-extensions des corps p-rationnels, Math. Nachr., Tome 149 (1990), pp. 163-176 | Article | MR 1124802 | Zbl 0723.11054

[24] Abbas Movahhedi; Thong Nguyen Quang Do Sur l’arithmétique des corps de nombres p-rationnels, Séminaire de théorie des nombres (Paris 1987-88), Springer (Progress in Mathematics) Tome 81 (1990) | Article | Zbl 0703.11059

[25] Dawn C. Nelson A Variation on Leopoldt’s Conjecture: Some Local Units instead of All Local Units (2013) (https://arxiv.org/abs/1308.4637)

[26] Midori Onabe On the isomorphisms of the Galois groups of the maximal abelian extensions of imaginary quadratic fields, Natur. Sci. Rep. Ochanomizu Univ., Tome 27 (1976) no. 2, pp. 155-161 | MR 435037 | Zbl 0354.12004

[27] Carlo Pagano; Efthymios Sofos 4-ranks and the general model for statistics of ray class groups of imaginary quadratic fields (2017) (https://arxiv.org/abs/1710.07587)

[28] Frédéric Pitoun Calculs théoriques et explicites en théorie d’Iwasawa, Université de Franche-comté Besançon (France) (2010) (Ph. D. Thesis)

[29] Frédéric Pitoun; Firmin Varescon Computing the torsion of the p-ramified module of a number field, Math. Comput., Tome 84 (2015) no. 291, pp. 371-383 | Article | MR 3266966 | Zbl 1317.11110

[30] The PARI Group PARI/GP version 2.9.0 (2016) (available from http://pari.math.u-bordeaux.fr/)

[31] Lawrence C. Washington Introduction to cyclotomic fields, Springer, Graduate Texts in Mathematics, Tome 83 (1997) | MR 1421575 | Zbl 0966.11047